95 research outputs found

    Influence of Different Preparation Processes on the Mechanical Properties of Carbon Nanotube-Reinforced Copper Matrix Composites

    No full text
    Experiments on the uniform distribution of carbon nanotubes in the copper matrix using different ball milling methods were performed. The effect of different preparation processes for carbon nanotube (CNT)-reinforced copper matrix composites on their conductivity and mechanical properties was also analyzed. High-performance carbon nanotube-reinforced copper matrix composites containing 1 vol.% CNT by the best preparation process termed flake ball milling (FBM) possess good interface bonding strength not only with CNT evenly dispersed in the copper matrix but also with the CNT morphology and structure having the utmost integrity. Tensile strength increased by 30% with an elongation of 26% and electrical conductivity of 85% IACS as compared to a pure copper block prepared from the same FBM powders.Выполнены эксперименты по оценке равномерности распределения углеродных нанотрубок в медной матрице с использованием разных методов размола в шаровой мельнице. Проанализировано влияние различных методов изготовления композиционных материалов с медной матрицей, упрочненных углеродными нанотрубками, на их электропроводность и механические свойства. Высококачественные композиционные материалы (содержат 1 об.% углеродных нанотрубок), изготовляемые наиболее эффективным способом, получившим навание размол в шаровой мельнице для придания пластинчатой структуры , приобретают хорошую прочность сцепления на поверхности контакта не только при равномерном распределении углеродных нанотрубок в медной матрице, но и при максимальной целостности их морфологии и структуры. Предел прочности при растяжении возрастал на 30% при удлинении 26% и электропроводности 85% по стандарту IACS по сравнению с заготовкой из чистой меди, изготовленной из тех же пластинчатых порошков

    Characterizing barley seed macro- and micro-nutrients under multiple environmental conditions

    Get PDF
    Crop seeds are the main staples in human diet, especially in undeveloped countries. In any case, the diet needs to be rich not only in macro-nutrients like carbohydrates and protein, but also in micro-nutrients. Nevertheless, both the macro- and micro-nutrients presented in seeds largely vary in consequence of field and environment conditions. In this research, 60 lines of a barley RILs population segregating for the SSR marker Hvm74, which is genetically linked to the GPC (grain protein content) locus (HvNAM-1), were studied in 4 environments (two growing years and two field managements) by carrying out a comprehensive profile of seed macro- (starch, total nitrogen and total soluble protein) and micro-nutrients (phytate, phenolics, flavonoids, Pi, Zn and Fe). Under field conditions, all the components were largely affected by the environment, but TN (total nitrogen) exhibited high genotype contribution, while micro-nutrients displayed higher genotype × environments interactions (GEI) than macro-nutrients. In order to approach the effects of carbon-nitrogen (C–N) balance on other seed components, two C/N ratios were calculated: C/TN (CNR1) and C/TSP (CNR2). CNR2 exhibited stronger negative correlations with all micro-nutrients. Hence, the significant GEI and its negative relationships with CNR2 highlighted the different characters of micro-nutrients in barley seeds

    Vibration induced memory effects and switching in ac-driven molecular nanojunctions

    Get PDF
    We investigate bistability and memory effects in a molecular junction weakly coupled to metallic leads with the latter being subject to an adiabatic periodic change of the bias voltage. The system is described by a simple Anderson-Holstein model and its dynamics is calculated via a master equation approach. The controlled electrical switching between the many-body states of the system is achieved due to polaron shift and Franck-Condon blockade in the presence of strong electron-vibron interaction. Particular emphasis is given to the role played by the excited vibronic states in the bistability and hysteretic switching dynamics as a function of the voltage sweeping rates. In general, both the occupation probabilities of the vibronic states and the associated vibron energy show hysteretic behaviour for driving frequencies in a range set by the minimum and maximum lifetimes of the system. The consequences on the transport properties for various driving frequencies and in the limit of DC-bias are also investigated.Comment: 15 pages, 20 figures, published versio

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run

    Get PDF
    Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103

    A joint Fermi-GBM and Swift-BAT analysis of gravitational-wave candidates from the third gravitational-wave observing run

    Get PDF
    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers

    Constraints on the cosmic expansion history from GWTC–3

    Get PDF
    We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding H0=688+12km  s1Mpc1{H}_{0}={68}_{-8}^{+12}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8km  s1Mpc1{H}_{0}={68}_{-6}^{+8}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814

    Arrival Time Dependent Shortest Path by On-Road Routing in Mobile Ad-Hoc Network

    No full text
    corecore