6,750 research outputs found

    Detection of spatially structured scattering polarization of Sr i 4607.3 Å with the Fast Solar Polarimeter

    Get PDF
    Context. Scattering polarization in the Sr I 4607.3 Å line observed with high resolution is an important diagnostic of the Sun's atmosphere and magnetism at small spatial scales. Investigating the scattering polarization altered by the Hanle effect is key to constraining the role of small-scale magnetic activity in solar atmospheric activity and energy balance. At present, spatially resolved observations of this diagnostic are rare and have not been reported as close to the disk center as for μ = 0.6. Aims. Our aim is to measure the scattering polarization in the Sr I line at μ = 0.6 and to identify the spatial fluctuations with a statistical approach. Methods. Using the Fast Solar Polarimeter (FSP) mounted on the TESOS filtergraph at the German Vacuum Tower Telescope (VTT) in Tenerife, Spain, we measured both the spatially resolved full Stokes parameters of the Sr I line at μ = 0.6 and the center-to-limb variation of the spatially averaged Stokes parameters. Results. We find that the center-to-limb variation of the scattering polarization in the Sr I line measured with FSP is consistent with previous measurements. A statistical analysis of Stokes Q/I (i.e., the linear polarization component parallel to the solar limb), sampled with 0.16″ pixel-1 in the line core of Sr I reveals that the signal strength is inversely correlated with the intensity in the continuum. We find stronger linear polarimetric signals corresponding to dark areas in the Stokes I continuum image (intergranular lanes). In contrast, independent measurements at μ = 0.3 show a positive correlation of Q/I with respect to the continuum intensity. We estimate that the subregion diameter responsible for the excess Q/I signal is on the order of 0.5″-1″. Conclusions. The presented observations and the statistical analysis of Q/I signals at μ = 0.6 complement reported scattering polarization observations as well as simulations. The FSP has proven to be a suitable instrument to measure spatially resolved scattering polarization signals. In the future, a systematic center-to-limb series of observations with subgranular spatial resolution and increased polarimetric sensitivity (<10-3) compared to that in the present study is needed in order to investigate the change in trend with μ that the comparison of our results with the literature suggests.Fil: Zeuner, F.. Universität Göttingen; Alemania. Institut für Sonnensystemforschung; AlemaniaFil: Feller, A.. Institut für Sonnensystemforschung; AlemaniaFil: Iglesias, Francisco Andres. Institut für Sonnensystemforschung; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Solanki, S.K.. Institut für Sonnensystemforschung; Alemania. Kyung Hee University; Corea del Su

    Anti-phospholipid-antibodies in patients with relapsing polychondritis

    Get PDF
    Relapsing polychondritis (RP) is an extremly rare multisystemic disease thought to be of autoimmune origin. In order to assess if RP is associated with anti-phospholipid antibodies (aPL), clinical data and sera of 21 patients with RP were collected in a multicentre study. Concentration of anti-cardiolipin antibodies (aCL) (IgG-, IgM-and IgA-isotypes), anti-phosphatidylserine-antibodies (aPS) (IgG-and IgM-isotypes) and anti-β-2-glycoprotein I-antibodies (aβ2 GPI) were measured by ELISA. In eight patients aCL were found to be elevated. One patient had elevated aPS. No patient had elevated aβ2 GPI. No patient had clinical signs and symptoms of a aPL syndrome. Interestingly, the two RP patients with the highest aPL had concomitant systemic lupus erythematosus (SLE). Therefore the presence of elevated aPL in RP is probably more closely related to an associated SLE than to RP itself. There is no convincing evidence that aPL are associated with RP

    Electromagnetic Radiation Hardness of Diamond Detectors

    Get PDF
    The behavior of artificially grown CVD diamond films under intense electromagnetic radiation has been studied. The properties of irradiated diamond samples have been investigated using the method of thermally stimulated current and by studying their charge collection properties. Diamonds have been found to remain unaffected after doses of 6.8 MGy of 10 keV photons and 10 MGy of MeV-range photons. This observation makes diamond an attractive detector material for a calorimeter in the very forward region of the proposed TESLA detector.Comment: 19 pages, 9 figure

    Co-targeting of Bcl-2 and mTOR pathway triggers synergistic apoptosis in BH3 mimetics resistant acute lymphoblastic leukemia

    Get PDF
    Several chemo-resistance mechanisms including the Bcl-2 protein family overexpression and constitutive activation of the PI3K/Akt/mTOR signaling have been documented in acute lymphoblastic leukemia (ALL), encouraging targeted approaches to circumvent this clinical problem. Here we analyzed the activity of the BH3 mimetic ABT-737 in ALL, exploring the synergistic effects with the mTOR inhibitor CCI-779 on ABT-737 resistant cells. We showed that a low Mcl-1/Bcl-2 plus Bcl-xL protein ratio determined ABT-737 responsiveness. ABT-737 exposure further decreased Mcl-1, inducing apoptosis on sensitive models and primary samples, while not affecting resistant cells. Co-inhibition of Bcl-2 and the mTOR pathway resulted cytotoxic on ABT-737 resistant models, by downregulating mTORC1 activity and Mcl-1 in a proteasome-independent manner. Although Mcl-1 seemed to be critical, ectopic modulation did not correlate with apoptosis changes. Importantly, dual targeting proved effective on ABT-737 resistant samples, showing additive/synergistic effects. Together, our results show the efficacy of BH3 mimetics as single agent in the majority of the ALL samples and demonstrate that resistance to ABT-737 mostly correlated with Mcl-1 overexpression. Co-targeting of the Bcl-2 protein family and mTOR pathway enhanced drug-induced cytotoxicity by suppressing Mcl-1, providing a novel therapeutic approach to overcome BH3 mimetics resistance in ALL

    Ba3Ga3N5 - A Novel Host Lattice for Eu2+ - Doped Luminescent Materials with Unexpected Nitridogallate Substructure

    Get PDF
    The alkaline earth nitridogallate Ba3Ga3N5 was synthesized from the elements in a sodium flux at 760°C utilizing weld shut tantalum ampules. The crystal structure was solved and refined on the basis of single-crystal X-ray diffraction data. Ba3Ga3N5 (space group C2/c (No. 15), a = 16.801(3), b = 8.3301(2), c = 11.623(2) Å, β = 109.92 (3)°, Z = 8) contains a hitherto unknown structural motif in nitridogallates, namely, infinite strands made up of GaN4 tetrahedra, each sharing two edges and at least one corner with neighboring GaN4 units. There are three Ba2+ sites with coordination numbers six or eight, respectively, and one Ba2+ position exhibiting a low coordination number 4 corresponding to a distorted tetrahedron. Eu2+ - doped samples show red luminescence when excited by UV irradiation at room temperature. Luminescence investigations revealed a maximum emission intensity at 638 nm (FWHM =2123 cm−1). Ba3Ga3N5 is the first nitridogallate for which parity allowed broadband emission due to Eu2+ - doping has been found. The electronic structure of both Ba3Ga3N5 as well as isoelectronic but not isostructural Sr3Ga3N5 was investigated by DFT methods. The calculations revealed a band gap of 1.53 eV for Sr3Ga3N5 and 1.46 eV for Ba3Ga3N5

    CD95/CD95L interactions and their role in autoimmunity

    Get PDF
    CD95 (Fas/Apo-1) is a broadly expressed death receptor involved in a variety of physiological and pathological apoptotic processes. Since its discovery, defects in CD95/CD95L system have been proposed as major pathogenic factors responsible for impaired immunological tolerance to self antigens and autoimmunity. Later, analysis of altered sensitivity to CD95-induced apoptosis in cells targeted by the immune response has revealed an unexpected role for CD95 and CD95L in organ-specific autoimmunity. CD95 has been shown to be expressed and functional in virtually all cell types that are target of the organ-specific autoimmune response. Here we review some of the major findings concerning the role of CD95 in autoimmunity, in dysfunctions due to increased or decreased CD95-induced apoptosis

    Prevention of Chemotherapy-Induced Anemia and Thrombocytopenia by Constant Administration of Stem Cell Factor

    Get PDF
    Purpose: Chemotherapy-induced apoptosis of immature hematopoietic cells is a major cause of anemia and thrombocytopenia in cancer patients. Although hematopoietic growth factors such as erythropoietin and colony-stimulating factors cannot prevent the occurrence of drug-induced myelosuppression, stem cell factor (SCF) has been previously shown to protect immature erythroid and megakaryocytic cells in vitro from drug-induced apoptosis. However, the effect of SCF in vivo as a single myeloprotective agent has never been elucidated. Experimental Design: The ability of SCF to prevent the occurrence of chemotherapy-induced anemia and thrombocytopenia was tested in a mouse model of cisplatin-induced myelosuppression. To highlight the importance of maintaining a continuous antiapoptotic signal in immature hematopoietic cells, we compared two treatment schedules: in the first schedule, SCF administration was interrupted during chemotherapy treatment and resumed thereafter, whereas in the second schedule, SCF was administered without interruption for 7 days, including the day of chemotherapy treatment. Results: The administration of SCF to cisplatin-treated mice could preserve bone marrow integrity, inhibit apoptosis of erythroid and megakaryocytic precursors, prevent chemotherapy-induced anemia, and rapidly restore normal platelet production. Treatment with SCF increased the frequency of Bcl-2/Bcl-XL\u2013 positive bone marrow erythroid cells and sustained Akt activation in megakaryocytes. Myeloprotection was observed only when SCF was administered concomitantly with cisplatin and kept constantly present during the days following chemotherapy treatment. Conclusions: SCF treatment can prevent the occurrence of chemotherapy-induced anemia and thrombocytopenia in mice, indicating a potential use of this cytokine in the supportive therapy of cancer patients

    Repeated exposure to subinfectious doses of sars-cov-2 may promote t cell immunity and protection against severe covid-19

    Get PDF
    Europe is experiencing a third wave of COVID-19 due to the spread of highly transmissible SARS-CoV-2 variants. A number of positive and negative factors constantly shape the rates of COVID-19 infections, hospitalization, and mortality. Among these factors, the rise in increasingly transmissible variants on one side and the effect of vaccinations on the other side create a picture deeply different from that of the first pandemic wave. Starting from the observation that in several European countries the number of COVID-19 infections in the second and third pandemic wave increased without a proportional rise in disease severity and mortality, we hypothesize the existence of an additional factor influencing SARS-CoV-2 dynamics. This factor consists of an immune defence against severe COVID-19, provided by SARS-CoV-2-specific T cells progressively developing upon natural exposure to low virus doses present in populated environments. As suggested by recent studies, low-dose viral particles entering the respiratory and intestinal tracts may be able to induce T cell memory in the absence of inflammation, potentially resulting in different degrees of immunization. In this scenario, non-pharmaceutical interventions would play a double role, one in the short term by reducing the detrimental spreading of SARS-CoV-2 particles, and one in the long term by allowing the development of a widespread (although heterogeneous and uncontrollable) form of immune protection
    corecore