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CD95 (Fas/Apo-1) is a broadly expressed death recep-
tor involved in a variety of physiological and pathologi-
cal apoptotic processes. Since its discovery, defects in
CD95/CD95L system have been proposed as major
pathogenic factors responsible for impaired immunolog-
ical tolerance to self antigens and autoimmunity. Later,
analysis of altered sensitivity to CD95-induced apoptosis
in cells targeted by the immune response has revealed an
unexpected role for CD95 and CD95L in organ-specific
autoimmunity. CD95 has been shown to be expressed
and functional in virtually all cell types that are target of
the organ-specific autoimmune response. Here we re-
view some of the major findings concerning the role of
CD95 in autoimmunity, in dysfunctions due to increased
or decreased CD95-induced apoptosis.
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Introduction

Apoptosis is a carefully regulated mechanism that plays a
key role in normal tissue development and homeostasis.
CD95/CD95L interactions are critically involved in this
process. CD95 is a 45 kDa type I transmembrane protein
with an extracellular cysteine-rich domain and an intra-
cytoplasmatic death domain. It belongs to the tumor
necrosis factor (TNF) receptor family and it is expressed at
high levels on activated lymphocytes and in several tissues
such as spleen, liver, lung, kidney and ovary.1−3 CD95L is
a 40 kDa type II transmembrane protein predominantly
expressed on activated lymphocytes (CD8 and CD4 Th1
subsets), NK cells, erythroblasts, immune privileged tis-
sues and certain tumors.4−7 CD95/CD95L interaction in-
duces recruitment of several signaling molecules, which
initiate a cascade of biochemical events that lead to cell
death. CD95L is homotrimeric and binds to three CD95
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molecules, clustering the receptors and forming a death-
inducing signaling complex that causes caspase-8 to en-
zymatically cleave and activate itself.8 Active caspase-8
then cleaves and activates other caspases that initiate dis-
mantling of cellular structures thus leading to apoptotic
death.9 CD95L is also released as a soluble form that can
induce apoptosis in an autocrine or paracrine CD95 fash-
ion and has been shown to be involved in activation in-
duced death of T cells. While apoptosis plays an impor-
tant role in physiological conditions, inappropriate activa-
tion of this process can lead to disease. Excessive apoptosis
has been observed in degenerative diseases and in organs
undergoing ischemia and riperfusion. On the other hand,
cancer is often the result of decreased apoptosis.

Immune system homeostasis is tightly regulated by
apoptosis to eliminate self-reactive lymphocytes and avoid
autoimmune reactions. Thus, the first studies on apopto-
sis in the context of autoimmunity related to the elimi-
nation of potentially reactive lymphocytes.10

The murine MRL strain carrying the lpr (lympho-
proliferative)11 and gld (generalized lymphoproliferative
disease)12 mutations, which affect CD95 and CD95L re-
spectively, are the prototype mouse models for lym-
phoproliferation-associated autoimmune disease. The au-
toimmune lymphoproliferative syndrome of lpr and gld
homozygous mice is characterized by multiple autoan-
tibodies, hypergammaglobulinemia and circulating im-
mune complexes as well as arthritis and glomerulonephri-
tis, a condition which closely resembles human systemic
lupus erythematosus (SLE). In addition, the animals de-
velop a progressive massive lymphoadenopathy due to the
accumulation in secondary organs of functionally inert,
non-proliferating CD3+ B220+ CD4− CD8− (double
negative) T cells.11

These observations challenged several groups to search
for similar alterations in human SLE. However, no consis-
tent defects in expression or function of CD95 and CD95L
have been found in SLE patients, probably because the
human disease results from the interaction of multiple
genetic traits with an abnormal apoptotic program.13,14

Recently, several spontaneous CD95 mutations involv-
ing its intracellular domain have been characterized in

Apoptosis · Vol 5 · No 5 · 2000 419



L. Ricci-Vitiani et al.

Table 1 . Involvement of altered CD95-induced apoptosis in human autoimmune conditions

CD95 induced apoptosis Autoimmune disease Cell type involved

Excessive Insulin-dependent diabetes mellitus Beta cell

Hashimoto’s thyroiditis Thyrocyte

Multiple sclerosis Oligodendrocyte

Sjogren’s syndrome Salivary and lachrymal cells

Ulcerative colitis Colonocyte

Diamond-blackfan anemia Erythroblast

Defective Canale-Smith syndrome T and B lymphocytes

(autoimmune lymphoproliferative syndrome)

Rheumatoid arthritis Synoviocyte

humans.15 These mutant proteins have a dominant
-negative effect on CD95-mediated apoptosis of activated
T cells and are associated with a chronic disease called
Canale-Smith syndrome,12 also known as autoimmune
lymphoproliferative syndrome16 or human lymphoprolif-
erative syndrome with autoimmunity.17 Patients present
within the first 2 years of life with lymphadenopathy,
hepatosplenomegaly, hemolytic anemia, thrombocytope-
nia and hypergammaglobulinemia.18 They have an in-
creased number of autoantibodies and circulating double
negative T cells. This syndrome closely resembles the lpr
and gld phenotypes. Both humans and animals have a
defective CD95 function that implicates an accumulation
of lymphocytes in lymph-nodes. In the Canale-Smith pa-
tients the lymph-node size is frequently reduced during
bacterial infections, probably because the release of cyto-
toxic cytokines promotes lymphocyte apoptosis through
alternative pathways.

Although lymphadenopathy, autoimmune thrombocy-
topenia and complications of blood transfusion continue
into adolescence and adulthood, abnormal CD95 function
is often compatible with long-term survival.19

The high sensitivity of activated lymphocytes to CD95-
induced apoptosis suggested that CD95L might be an
important effector in acute Graft-Versus-Host Disease
(GVHD). In recent studies the parent-into-F1 model of
GVHD was used to investigate the role of CD95 and
CD95L in the severe reduction in host lymphocytes and
the immunodeficiency characteristic of the acute form of
GVHD. Acute GVHD mice exhibit significant upregu-
lation of CD95 and CD95L. Moreover functional stud-
ies demonstrated that CD95/CD95L interactions contri-
buted to the anti-host CTL activity in acute GVHD mice
together with the perforin-dependent pathway. The ob-
servation that CD95/CD95L upregulation could be
blocked by anti-IFN-γ Abs suggests that their interac-
tion is critically dependent on Ag-specific CD8+ T cells
activation and IFN-γ production.20,21

In contrast to systemic autoimmunity, organ-specific
autoimmune diseases are characterized by a cell-mediated

attack against selected cell types that may result in tis-
sue destruction. Cell targets are pancreatic β cells in
insulin-dependent diabetes mellitus (IDDM), thyrocytes
in Hashimoto’s thyroiditis (HT), oligodendrocytes in mul-
tiple sclerosis (MS), synoviocytes in rheumatoid arthritis,
salivary and lachrymal glands in Sjogren’s syndrome, and
crypt epithelial cells in ulcerative colitis.22

Both systemic and organ-specific autoimmune diseases
may be the result of altered susceptibility to CD95-in-
duced apoptosis (Table 1).

Insulin-dependent diabetes mellitus

IDDM is a chronic autoimmune disease characterized by
selective T-cell-mediated destruction of insulin-producing
pancreatic β cells.23

Most of the knowledge on the pathogenesis of IDDM
comes from studies on the nonobese diabetic (NOD)
mouse, which spontaneously develops an autoimmune
disease that shares many features with human IDDM.24

The pathogenesis of this multifactorial disease involves
both environmental and genetic components. Among
the genetic factors, Major Histocompatibility Complex
(MHC) class II genotype (I-A and I-E in mice; DR and
DQ in humans) is the strongest predisposing condition.25

Several β-cell autoantigens (such as insulin, GAD65/67,
HSP60) have been identified, but little is actually known
about their role in the disease process since none of them
is sufficient to induce IDDM after immunization and
only insulin is specific to the pancreas.23 Many evidences
indicate that both CD4 and CD8 T-cell subsets are re-
quired for β-cell destruction in IDDM. Two different
cytotoxic mechanisms seem to be involved in this pro-
cess: (1) the effector cell release of perforin-containing
granules on target cells and (2) the CD95/CD95L lytic
pathway.26,27 The former requires TCR-MHC interac-
tion, while CD95L can kill bystander cells in the ab-
sence of cell contact. Perforin-deficient NOD mice dis-
played reduced incidence and delayed onset of diabetes,
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suggesting that autoreactive T-cell clones may kill pan-
creatic β cells in a MHC-dependent CD95 fashion.28

However, β-cell destruction can occur in the absence of
cell contact between effector and target cells, a condi-
tion required for MHC-based perforin-mediated cytotox-
icity. Indeed, CD4+ cells can transfer diabetes in the
absence of CD8+ cells by targeting MHC class II neg-
ative β cells, which can be killed by a death pathway
that is clearly independent of MHC-TCR interaction.29

In line with these results, CD95L+ CD4+ cells have been
shown to kill CD95+ β cells in human pancreata isolated
from newly diagnosed IDDM patients. During the insuli-
tis process, activated islet-infiltrating macrophages pro-
duce nitric oxide and secrete IL-1β that in turn induces
nitric oxide production in β cells. This results in selective
nitric oxide-mediated upregulation of functional CD95
molecules on β cells, which are subsequently killed by
CD95L-producing T cells.30

Hashimoto’s thyroiditis

HT is a chronic autoimmune disease characterized by a
progressive destruction of thyroid epithelial cells and re-
duced production of thyroid hormones. Thyroid gland
presents a marked T and B lymphocyte infiltration, while
a diffuse fibrosis tends to replace the parenchyma.31,32 In
normal thyroid there is an extremely low level of apopto-
sis that counteracts the slow physiological thyrocyte pro-
liferation, contributing to tissue homeostasis.33 By con-
trast, in glands from HT patients apoptotic cell death is
strongly accelerated, leading to thyrocyte depletion and
hypothyroidism.34 Normal thyrocytes constitutively ex-
press functional CD95L, which is further upregulated dur-
ing autoimmune thyroiditis.35 However, such expression
does not result in thyroid immune privilege and immune
evasion. CD95 is weakly or not expressed in normal thyro-
cytes, but it is strongly upregulated in thyrocytes from HT
glands, possibly as a consequence of the intense inflam-
matory process.36,37 In vitro studies have demonstrated
that IL-1β and IFN-γ induce CD95 expression in nor-
mal thyrocytes. During the autoimmune inflammation,
these cytokines promote massive CD95 upregulation in
thyrocytes. Simultaneous expression of CD95 and CD95L
in thyroid cells has been shown to result in apoptotic cell
death by autocrine or paracrine mechanisms.35 Differently
from IDDM, in this unconventional autoimmune disease
infiltrating T cells are killed by CD95L+ thyrocytes and
do not seem to play an executive role.Grave’s disease is an-
other autoimmune thyroid disorder caused by stimulating
autoantibodies that activate thyroid hyperplasia. Little or
no apoptosis has been detected in Grave’s disease glands
and this may contribute to thyroid hyperplasia.38,39 These
studies have suggested the possibility that thyroid glands

from Grave’s disease patients may produce high levels of
antiapoptotic factors.40

Multiple sclerosis

MS is a progressive demyelinating disease of the central
nervous system (CNS) characterized by the loss of neuronal
functions. It is considered a T cell-mediated autoimmune
disease in which myelin and oligodendrocytes become the
target of an inflammatory injury, resulting in the forma-
tion of typical lesion, called plaques. These are multi-
focal areas of inflammation and demyelination compris-
ing macrophages, lymphocytes and plasmacells.41,42 Like
IDDM, MS is associated with genes of the human MHC.
CD4+ T cells specific for myelin antigens are believed to
initiate and perpetuate the autoimmune process. Nev-
ertheless, oligodendrocytes do not express MHC class II
molecules and can not be killed by CD4+ T cells through
an antigen dependent mechanism.43,44

Due to the difficult access of human CNS, many ad-
vances on the pathogenesis of MS derive from studies
on the murine experimental allergic encephalomyelitis
(EAE) model. EAE is induced in several rodent species by
immunization with myelin antigens or by passive trans-
fer of myelin-reactive CD4+ T cells.41,45,46 The obser-
vation that lpr or gld mutations protect mice from tissue
damage in EAE has clearly evidenced the involvement
of CD95/CD95L interactions in the disease process.47−49

Immunohistochemical analysis of normal brain sections
indicate that low levels of CD95 are constitutively ex-
pressed on oligodendrocytes whereas high levels were de-
tected in oligodendrocytes from active and silent MS
lesions. Moreover, the same analysis revealed a high
CD95L expression on infiltrating lymphocytes during ac-
tive and chronic silent MS.43,50

Different hypotheses stem from these data. Since macro-
phages are required for induction of EAE and their death
has been observed in tissue lesions, they are believed to
play an important role in the pathogenesis of MS.51,52

During the inflammation phase the production of cy-
tokines, such as IFN-γ or TNF-α, activates CNS macro-
phages that are killed by T cells in an antigen-dependent
MHC-restricted manner via the CD95 pathway.53 In this
model, oligodendrocyte destruction might be mediated
by macrophages through the release of cytokines, pro-
teolytic enzymes and other toxic products. Alternatively,
oligodendrocytes may be directly killed through the CD95
pathway. This has been suggested because MS oligoden-
drocytes express CD95, while microglial cells and infil-
trating CD4+ T cells express CD95L. Moreover, oligo-
dendrocytes are extremely sensitive to CD95-induced cell
death. Thus, although direct demonstration is still
missing, it is likely that the interaction of CD95
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and CD95L plays a major role in the pathogenesis of
MS.

Other CD95-mediated organ specific
autoimmune diseases?

An opposite mechanism, involving defective CD95-
induced apoptosis has been implicated in uncontrolled
synovial cell proliferation leading to rheumatoid arthritis.
An inadequate apoptosis in this autoimmune disease may
promote extended survival of synoviocytes and explain the
hyperplastic nature of the pannus and the consequent de-
struction of cartilage and bone.54,55 Several studies sug-
gest that the production of cytokines, such as TGF-β,
IL-1β and TNF-α, during the joint inflammatory process
may stimulate synoviocyte proliferation and reduce their
sensitivity to CD95-mediated apoptosis.56,57

High levels of soluble CD95 have been detected in
synovial fluid during acute rheumatoid arthritis, con-
tributing to inhibition of synoviocyte and inflammatory
cell apoptosis.58 Despite the simultaneous expression of
CD95 and CD95L, low levels of apoptosis have been
also described in infiltrating T lymphocytes, which are
likely to maintain and amplify inflammation in joint
lesions.54,59,60

Sjogren’s syndrome is a lymphoproliferative disease char-
acterized by a destructive mononuclear cell infiltration in
salivary and lachrymal glands. In the first phase of dis-
ease gland lesions are limited to periductal areas. Later the
lymphocytic infiltrate enlarges and destroys acinar epithe-
lium decreasing glandular secretion. The observation that
MRL-lpr/lpr mice develop a salivary gland lymphoid infil-
trate similar to human Sjogren’s syndrome suggested that
defects in CD95/CD95L mediated apoptosis might be in-
volved in the pathogenesis of this disorder.61,62 Infiltrat-
ing T cells in focal lesions of salivary glands from Sjogren’s
syndrome patients express CD95 and very low levels of
CD95L, but they are blocked in their ability to commit
to apoptosis. In contrast to ITL, acinar cells are CD95
and CD95L positive and may undergo CD95-mediated
apoptosis.63 Again, murine experimental models increas-
ed the understanding of pathogenetic mechanisms. In ad-
dition to autoimmune diabetes, NOD mice develop loss
of salivary glands resembling human Sjogren’s syndrome.
Surprisingly, immunodeficient NOD/scid mice maintain
loss of submandibular acinar cells, suggesting that lym-
phocytes are not necessary to cause salivary gland dam-
age. Similarly to thyrocytes in HT, in both human and
experimental Sjogren’s syndrome, submandibular gland
cells show high levels of CD95 and CD95L, suggesting a
mechanism of suicide or fraticide.

Ulcerative colitis is a chronic inflammatory gut dis-
ease in which exogenous and endogenous factors lead
to mucosal alterations resulting in the loss of colonic

epithelium.64 In normal colonic crypts, columnar epithe-
lial cells proliferate, differentiate, migrate in the upper
portion and are removed. It has been hypothesized that
before being removed these cells undergo CD95-mediated
apoptosis, which contributes to the physiological regula-
tion of the colonic epithelium homeostasis.65−67 Human
colonic epithelial cells constitutively express high levels
of CD95 throughout the crypts, while the expression of
CD95L is still controversial. The observation that lpr or
gld mice do not develop UC suggests that the interaction
between CD95 and CD95L may have a role in the patho-
genesis of the disease. The level of CD95 expression on
epithelial cells in ulcerative colitis is comparable to that
of normal enterocytes or slightly increased. The presence
of apoptotic bodies in the crypt epithelium of ulcerative
colitis patients suggests that the gradual loss of the crypt
is due to apoptosis.68 It has been proposed that under in-
flammatory conditions colonocytes acquire an increased
sensitivity to CD95 mediated apoptosis and are killed by
CD95L-expressing lamina propria lymphocytes.69,70

Conclusions

Excessive or defective susceptibilities to CD95-induced
apoptosis have been proposed as major pathogenetic mech-
anisms in a variety of autoimmune diseases. While rare
inactivating mutations of CD95 or CD95L are clearly re-
sponsible for several human and mouse lymphoprolifer-
ative diseases, conclusive data on target destruction in
organ-specific autoimmunity are still missing. Although
it is likely that CD95-induced apoptosis contributes to
target cell destruction in organ-specific autoimmunity,
further studies are required to find out whether multiple
cytotoxic mechanisms may contribute to tissue destruc-
tion in a single individual or whether a single autoimmune
disease may be heterogeneous and result from different
pathogenetic mechanisms in different individuals.
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