685 research outputs found

    Oxygen Levels and Immunological Studies

    Get PDF

    Bcl-3 deficiency protects against dextran-sodium sulphate-induced colitis in the mouse

    Get PDF
    Bcl-3 is a member of the IκB family of proteins and is an essential negative regulator of Toll-like receptor induced responses. Recently, a single nucleotide polymorphism associated with reduced Bcl-3 gene expression has been identified as a potential risk factor for Crohn's disease. Here we report that in contrast to the predictions of SNP analysis, patients with Crohn's disease and ulcerative colitis demonstrate elevated Bcl-3 mRNA expression relative to healthy individuals. To further explore the potential role of Bcl-3 in inflammatory bowel disease (IBD) we used the dextran-sodium sulphate (DSS) induced model of colitis in Bcl-3(-/-) mice. We found that Bcl-3(-/-) mice were less sensitive to DSS-induced colitis compared to wild type controls and demonstrated no significant weight loss following treatment. Histological analysis revealed similar levels of oedema and leukocyte infiltration between DSS treated wild type and Bcl-3(-/-) mice but showed that Bcl-3(-/-) mice retained colonic tissue architecture which was absent in wild type mice following DSS treatment. Analysis of the expression of the pro-inflammatory cytokines IL-1β, TNFα and IL-6 revealed no significant differences between DSS-treated Bcl-3(-/-) and wild type mice. Analysis of intestinal epithelial cell proliferation revealed enhanced proliferation in Bcl-3(-/-) mice which correlated with preserved tissue architecture. Our results reveal that Bcl-3 has an important role in regulating intestinal epithelial cell proliferation and sensitivity to DSS induced colitis which is distinct from its role as a negative regulator of inflammation

    IL-22 mediates goblet cell hyperplasia and worm expulsion in intestinal helminth infection.

    Get PDF
    Type 2 immune responses are essential in protection against intestinal helminth infections. In this study we show that IL-22, a cytokine important in defence against bacterial infections in the intestinal tract, is also a critical mediator of anti-helminth immunity. After infection with Nippostrongylus brasiliensis, a rodent hookworm, IL-22-deficient mice showed impaired worm expulsion despite normal levels of type 2 cytokine production. The impaired worm expulsion correlated with reduced goblet cell hyperplasia and reduced expression of goblet cell markers. We further confirmed our findings in a second nematode model, the murine whipworm Trichuris muris. T.muris infected IL-22-deficient mice had a similar phenotype to that seen in N.brasiliensis infection, with impaired worm expulsion and reduced goblet cell hyperplasia. Ex vivo and in vitro analysis demonstrated that IL-22 is able to directly induce the expression of several goblet cell markers, including mucins. Taken together, our findings reveal that IL-22 plays an important role in goblet cell activation, and thus, a key role in anti-helminth immunity

    IL-22 Signaling Contributes to West Nile Encephalitis Pathogenesis

    Get PDF
    The Th17 cytokine, IL-22, regulates host immune responses to extracellular pathogens. Whether IL-22 plays a role in viral infection, however, is poorly understood. We report here that Il22-/- mice were more resistant to lethal West Nile virus (WNV) encephalitis, but had similar viral loads in the periphery compared to wild type (WT) mice. Viral loads, leukocyte infiltrates, proinflammatory cytokines and apoptotic cells in the central nervous system (CNS) of Il22-/- mice were also strikingly reduced. Further examination showed that Cxcr2, a chemokine receptor that plays a non-redundant role in mediating neutrophil migration, was significantly reduced in Il22-/- compared to WT leukocytes. Expression of Cxcr2 ligands, cxcl1 and cxcl5, was lower in Il22-/- brains than wild type mice. Correspondingly, neutrophil migration from the blood into the brain was attenuated following lethal WNV infection of Il22-/- mice. Our results suggest that IL-22 signaling exacerbates lethal WNV encephalitis likely by promoting WNV neuroinvasion

    Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus.

    Get PDF
    Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. Expression studies were performed by microarray analysis, quantitative PCR (qPCR), reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes), many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes). Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV

    IL-22 Production Is Regulated by IL-23 During Listeria monocytogenes Infection but Is Not Required for Bacterial Clearance or Tissue Protection

    Get PDF
    Listeria monocytogenes (LM) is a gram-positive bacterium that is a common contaminant of processed meats and dairy products. In humans, ingestion of LM can result in intracellular infection of the spleen and liver, which can ultimately lead to septicemia, meningitis, and spontaneous abortion. Interleukin (IL)-23 is a cytokine that regulates innate and adaptive immune responses by inducing the production of IL-17A, IL-17F, and IL-22. We have recently demonstrated that the IL-23/IL-17 axis is required for optimal recruitment of neutrophils to the liver, but not the spleen, during LM infection. Furthermore, these cytokines are required for the clearance of LM during systemic infection. In other infectious models, IL-22 induces the secretion of anti-microbial peptides and protects tissues from damage by preventing apoptosis. However, the role of IL-22 has not been thoroughly investigated during LM infection. In the present study, we show that LM induces the production of IL-22 in vivo. Interestingly, IL-23 is required for the production of IL-22 during primary, but not secondary, LM infection. Our findings suggest that IL-22 is not required for clearance of LM during primary or secondary infection, using both systemic and mucosal models of infection. IL-22 is also not required for the protection of LM infected spleens and livers from organ damage. Collectively, these data indicate that IL-22 produced during LM infection must play a role other than clearance of LM or protection of tissues from pathogen- or immune-mediated damage

    Irritable bowel syndrome, inflammatory bowel disease and the microbiome

    Get PDF
    PURPOSE OF REVIEW: The review aims to update the reader on current developments in our understanding of how the gut microbiota impact on inflammatory bowel disease and the irritable bowel syndrome. It will also consider current efforts to modulate the microbiota for therapeutic effect. RECENT FINDINGS: Gene polymorphisms associated with inflammatory bowel disease increasingly suggest that interaction with the microbiota drives pathogenesis. This may be through modulation of the immune response, mucosal permeability or the products of microbial metabolism. Similar findings in irritable bowel syndrome have reinforced the role of gut-specific factors in this ‘functional’ disorder. Metagenomic analysis has identified alterations in pathways and interactions with the ecosystem of the microbiome that may not be recognized by taxonomic description alone, particularly in carbohydrate metabolism. Treatments targeted at the microbial stimulus with antibiotics, probiotics or prebiotics have all progressed in the past year. Studies on the long-term effects of treatment on the microbiome suggest that dietary intervention may be needed for prolonged efficacy. SUMMARY: The microbiome represents ‘the other genome’, and to appreciate its role in health and disease will be as challenging as with our own genome. Intestinal diseases occur at the front line of our interaction with the microbiome and their future treatment will be shaped as we unravel our relationship with it

    Purine metabolism controls innate lymphoid cell function and protects against intestinal injury

    Get PDF
    Inflammatory bowel disease (IBD) is a condition of chronic inflammatory intestinal disorder with increasing prevalence but limited effective therapies. The purine metabolic pathway is involved in various inflammatory processes including IBD. However, the mechanisms through which purine metabolism modulates IBD remain to be established. Here, we found that mucosal expression of genes involved in the purine metabolic pathway is altered in patients with active ulcerative colitis (UC), which is associated with elevated gene expression signatures of the group 3 innate lymphoid cell (ILC3)–interleukin (IL)‐22 pathway. In mice, blockade of ectonucleotidases (NTPDases), critical enzymes for purine metabolism by hydrolysis of extracellular adenosine 5′‐triphosphate (eATP) into adenosine, exacerbates dextran‐sulfate sodium‐induced intestinal injury. This exacerbation of colitis is associated with reduction of colonic IL‐22‐producing ILC3s, which afford essential protection against intestinal inflammation, and is rescued by exogenous IL‐22. Mechanistically, activation of ILC3s for IL‐22 production is reciprocally mediated by eATP and adenosine. These findings reveal that the NTPDase‐mediated balance between eATP and adenosine regulates ILC3 cell function to provide protection against intestinal injury and suggest potential therapeutic strategies for treating IBD by targeting the purine–ILC3 axis

    Regulation of pathogenesis and immunity in helminth infections

    Get PDF
    Helminths are multicellular eukaryotic parasites that infect over one quarter of the world’s population. Through coevolution with the human immune system, these organisms have learned to exploit immunoregulatory pathways, resulting in asymptomatic tolerance of infections in many individuals. When infections and the resulting immune responses become dysregulated, however, acute and chronic pathologies often develop. A recent international meeting focused on how these parasites modulate host immunity and how control of parasitic and immunopathological disease might be achieved
    corecore