356 research outputs found
Isotopic evidences for microbiologically mediated and direct C input to soil compounds from three different leaf litters during their decomposition
We show the potentiality of coupling together different compound-specific isotopic analyses in a laboratory experiment, where 13C-depleted leaf litter was incubated on a 13C-enriched soil. The aim of our study was to identify the soil compounds where the C derived from three different litter species is retained. Three 13C-depleted leaf litter (Liquidambar styraciflua L., Cercis canadensis L. and Pinus taeda L., δ13CvsPDB ≈ −43‰), differing in their degradability, were incubated on a C4 soil (δ13CvsPDB ≈ −18‰) under laboratory-controlled conditions for 8 months. At harvest, compound-specific isotope analyses were performed on different classes of soil compounds [i.e. phospholipids fatty acids (PLFAs), n-alkanes and soil pyrolysis products]. Linoleic acid (PLFA 18:2ω6,9) was found to be very depleted in 13C (δ13CvsPDB ≈ from −38 to −42‰) compared to all other PLFAs (δ13CvsPDB ≈ from −14 to −35‰). Because of this, fungi were identified as the first among microbes to use the litter as source of C. Among n-alkanes, long-chain (C27–C31) n-alkanes were the only to have a depleted δ13C. This is an indication that not all of the C derived from litter in the soil was transformed by microbes. The depletion in 13C was also found in different classes of pyrolysis products, suggesting that the litter-derived C is incorporated in less or more chemically stable compounds, even only after 8 months decomposition
Influence of Microbial Biofilms on the Preservation of Primary Soft Tissue in Fossil and Extant Archosaurs
Background: Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings: This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Base
Seasonal switchgrass ecotype contributions to soil organic carbon, deep soil microbial community composition and rhizodeposit uptake during an extreme drought
The importance of rhizodeposit C and associated microbial communities in deep soil C stabilization is relatively unknown. Phenotypic variability in plant root biomass could impact C cycling through belowground plant allocation, rooting architecture, and microbial community abundance and composition. We used a pulse-chase 13C labeling experiment with compound-specific stable-isotope probing to investigate the importance of rhizodeposit C to deep soil microbial biomass under two switchgrass ecotypes (Panicum virgatum L., Kanlow and Summer) with contrasting root morphology. We quantified root phenology, soil microbial biomass (phospholipid fatty acids, PLFA), and microbial rhizodeposit uptake (13C-PLFAs) to 150 cm over one year during a severe drought. The lowland ecotype, Kanlow, had two times more root biomass with a coarser root system compared to the upland ecotype, Summer. Over the drought, Kanlow lost 78% of its root biomass, while Summer lost only 60%. Rhizosphere microbial communities associated with both ecotypes were similar. However, rhizodeposit uptake under Kanlow had a higher relative abundance of gram-negative bacteria (44.1%), and Summer rhizodeposit uptake was primarily in saprotrophic fungi (48.5%). Both microbial community composition and rhizodeposit uptake shifted over the drought into gram-positive communities. Rhizosphere soil C was greater one year later under Kanlow due to turnover of unlabeled structural root C. Despite a much greater root biomass under Kanlow, rhizosphere δ13C was not significantly different between the two ecotypes, suggesting greater microbial C input under the finer rooted species, Summer, whose microbial associations were predominately saprotrophic fungi. Ecotype specific microbial communities can direct rhizodeposit C flow and C accrual deep in the soil profile and illustrate the importance of the microbial community in plant strategies to survive environmental stress such as drought
Species-Specific Effects of Epigeic Earthworms on Microbial Community Structure during First Stages of Decomposition of Organic Matter
Background: Epigeic earthworms are key organisms in organic matter decomposition because of the interactions they establish with microorganisms. The earthworm species and the quality and/or substrate availability are expected to be major factors influencing the outcome of these interactions. Here we tested whether and to what extent the epigeic earthworms Eisenia andrei, Eisenia fetida and Perionyx excavatus, widely used in vermicomposting, are capable of altering the microbiological properties of fresh organic matter in the short-term. We also questioned if the earthworm-induced modifications to the microbial communities are dependent on the type of substrate ingested. Methodology/Principal Findings: To address these questions we determined the microbial community structure (phospholipid fatty acid profiles) and microbial activity (basal respiration and microbial growth rates) of three types of animal manure (cow, horse and rabbit) that differed in microbial composition, after being processed by each species of earthworm for one month. No differences were found between earthworm-worked samples with regards to microbial community structure, irrespective of type of manure, which suggests the existence of a bottleneck effect of worm digestion on microbial populations of the original material consumed. Moreover, in mesocosms containing cow manure the presence of E. andrei resulted not only in a decrease in bacterial and fungal biomass, but also in a reduced bacterial growth rate and total microbial activity, while no such reduction was found with E. fetida and P. excavatus
Impacts of land use change to short rotation forestry for bioenergy on soil greenhouse gas emissions and soil carbon
Short Rotation Forestry (SRF) for bioenergy could be used to meet biomass
requirements and contribute to achieving renewable energy targets. As an important
source of biomass it is important to gain an understanding of the implications of
large-scale application of SRF on the soil-atmosphere greenhouse gas (GHG)
exchange. This study examined the effects of land use change (LUC) from grassland
to SRF on soil fluxes of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2),
and the important drivers in action.
Examining soils from a range of sites across the UK, CO2 emission potentials were
reduced under SRF with differences between coniferous and broadleaved transitions;
these changes were found to be related to changes in soil pH and microbial biomass.
However, there were limited effects of SRF tree species type on CH4 and N2O fluxes.
A detailed study at an experimental SRF site over 16 months demonstrated a
reduction in CH4 and net CO2 emissions from soils under SRF and revealed intriguing
temporal dynamics of N2O under Sitka spruce and common alder. A significant
proportion of the variation in soil N2O fluxes was attributed to differences between
tree species, water table depth, spatial effects, and their interactions. The effects of
microtopography (ridges, troughs, flats), and its interactions with water table depth
on soil GHG fluxes under different tree species was tested using mesocosm cores
collected in the field. Microtopography did not significantly affect soil GHG fluxes
but trends suggested that considering this spatial factor in sampling regimes could
be important. N2O fluxes from Sitka spruce soils did not respond to water table depth
manipulation in the laboratory suggesting that they may also be determined by tree-driven
nitrogen (N) availability, with other research showing N deposition to be
higher in coniferous plantations. An N addition experiment lead to increased N2O
emissions with greatest relative response in the Sitka spruce soils.
Overall, LUC from rough grassland to SRF resulted in a reduction in soil CH4
emissions, increased N2O emissions and a reduction or no change in net CO2
emissions. These changes in emissions were influenced both directly and indirectly
by tree species type with Sitka spruce having the greatest effect on N2O in particular,
thus highlighting the importance of considering soil N2O emissions in any life cycle
analysis or GHG budgets of LUC to SRF for bioenergy. This research can help inform
decisions around SRF tree species selection in future large-scale bioenergy planting
Monitoring of microbial hydrocarbon remediation in the soil
Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon-degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation, thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities, respectively. Provided the polluted soil has requisite values for environmental factors that influence microbial activities and there are no inhibitors of microbial metabolism, there is a good chance that there will be a viable and active population of hydrocarbon-utilizing microorganisms in the soil. Microbial methods for monitoring bioremediation of hydrocarbons include chemical, biochemical and microbiological molecular indices that measure rates of microbial activities to show that in the end the target goal of pollutant reduction to a safe and permissible level has been achieved. Enumeration and characterization of hydrocarbon degraders, use of micro titer plate-based most probable number technique, community level physiological profiling, phospholipid fatty acid analysis, 16S rRNA- and other nucleic acid-based molecular fingerprinting techniques, metagenomics, microarray analysis, respirometry and gas chromatography are some of the methods employed in bio-monitoring of hydrocarbon remediation as presented in this review
Persistence of dissolved organic matter explained by molecular changes during its passage through soil
Dissolved organic matter affects fundamental biogeochemical processes in the soil such as nutrient cycling and organic matter storage. The current paradigm is that processing of dissolved organic matter converges to recalcitrant molecules (those that resist degradation) of low molecular mass and high molecular diversity through biotic and abiotic processes. Here we demonstrate that the molecular composition and properties of dissolved organic matter continuously change during soil passage and propose that this reflects a continual shifting of its sources. Using ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, we studied the molecular changes of dissolved organic matter from the soil surface to 60 cm depth in 20 temperate grassland communities in soil type Eutric Fluvisol. Applying a semi-quantitative approach, we observed that plant-derived molecules were first broken down into molecules containing a large proportion of low-molecular-mass compounds. These low-molecular-mass compounds became less abundant during soil passage, whereas larger molecules, depleted in plant-related ligno-cellulosic structures, became more abundant. These findings indicate that the small plant-derived molecules were preferentially consumed by microorganisms and transformed into larger microbial-derived molecules. This suggests that dissolved organic matter is not intrinsically recalcitrant but instead persists in soil as a result of simultaneous consumption, transformation and formation
- …