20 research outputs found

    Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO\u3csub\u3e2\u3c/sub\u3e and warming

    Get PDF
    Terrestrial plant and soil respiration, or ecosystem respiration (Reco), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2007–2012) of Reco data from the Prairie Heating And CO2 Enrichment (PHACE) experiment. We applied a semi-mechanistic temperature–response model to simultaneously evaluate the response of Reco to three treatment factors (elevated CO2, warming, and soil water manipulation) and their interactions with antecedent soil conditions [e.g., past soil water content (SWC) and temperature (SoilT)] and aboveground factors (e.g., vapor pressure deficit, photosynthetically active radiation, vegetation greenness). The model fits the observed Reco well (R2 = 0.77). We applied the model to estimate annual (March–October) Reco, which was stimulated under elevated CO2 in most years, likely due to the indirect effect of elevated CO2 on SWC. When aggregated from 2007 to 2012, total six-year Reco was stimulated by elevated CO2 singly (24%) or in combination with warming (28%). Warming had little effect on annual Reco under ambient CO2, but stimulated it under elevated CO2 (32% across all years) when precipitation was high (e.g., 44% in 2009, a ‘wet’ year). Treatment-level differences in Reco can be partly attributed to the effects of antecedent SoilT and vegetation greenness on the apparent temperature sensitivity of Reco and to the effects of antecedent and current SWC and vegetation activity (greenness modulated by VPD) on Reco base rates. Thus, this study indicates that the incorporation of both antecedent environmental conditions and aboveground vegetation activity are critical to predicting Reco at multiple timescales (subdaily to annual) and under a future climate of elevated CO2 and warming

    ENSO‐Influenced Drought Drives Methane Flux Dynamics in a Tropical Wet Forest Soil

    Get PDF
    Global atmospheric methane growth rates have wildly fluctuated over the past three decades, which may be driven by the proportion of tropical land surface saturated by water. The El Niño/Southern Oscillation Event (ENSO) cycle drives large‐scale climatic trends globally, with El Niño events typically bringing drier weather than La Niña. In a lowland tropical wet forest in Costa Rica, we measured methane flux bimonthly from March 2016 to June 2017 and using an automated chamber system. We observed a strong drying trend for several weeks during the El Niño in 2016, reducing soil moisture below normal levels. In contrast, soil conditions had high water content prior to the drought and during the moderate La Niña that followed. Soil moisture varied across the period studied and significantly impacted methane flux. Methane consumption was greater during the driest part of the El Niño period, while during La Niña and other time periods, soils had lower methane consumption. The mean methane flux observed was −0.022 mg CH4‐C m−2 hr−1, and methane was consumed at all timepoints, with lower consumption in saturated soils. Our data show that month studied, and the correlation between soil type and month significantly drove methane flux trends. Our data indicate that ENSO cycles may impact biogenic methane fluxes, mediated by soil moisture conditions. Climate projections for Central America show dryer conditions and increased El Niño frequency, further exacerbating predicted drought. These trends may lead to negative climate feedbacks, with drier conditions increasing soil methane consumption from the atmosphere.National Science Foundation/[DEB‐1624623]/NSF/Estados UnidosNational Science Foundation/[DEB‐1442537]/NSF/Estados UnidosNational Science Foundation/[DEB‐1624658]/NSF/Estados UnidosNational Science Foundation/[DEB‐1442714]/NSF/Estados UnidosUnited States Department of Agriculture-National Institute of Food and Agriculture/[CA‐R‐PPA‐5093‐H/1005159]/USDA NIFA/Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC

    Seasonally contrasting responses of evapotranspiration to warming and elevated CO 2

    No full text
    Global climate change is expected to alter seasonal patterns and rates of evapotranspiration in dry regions. Although climate change will involve elevated CO2 and increased temperatures, independently, these factors may have different impacts on actual evapotranspiration (AET) due to their opposing effects on transpiration. We used canopy gas exchange chambers to quantify AET in a semiarid grassland experimentally altered by elevated CO2 and warming over 3 years with contrasting ambient precipitation. Seasonal and interannual variations in AET due to background climate variability were larger than the effects of climate manipulation treatments. However, in a year with average precipitation, cumulative growing season AET was suppressed by warming by 23%. Across years, warming increased AET early in the growing season and suppressed it later in the growing season. By contrast, elevated CO2 suppressed AET early in the growing season and enhanced it later, but only in years with average or above-average precipitation. Vegetation greenness (a proxy for photosynthetically active leaf area) was consistently the strongest predictor of AET, whereas soil moisture and vapor pressure deficit were secondary drivers. Our research demonstrates that effects of increased atmospheric CO2 and temperature on AET will be mediated by plant phenological development and seasonal climatic conditions

    Warming and increased precipitation frequency on the Colorado Plateau: implications for biological soil crusts and soil processes

    No full text
    Aims Changes in temperature and precipitation are expected to influence ecosystem processes worldwide. Despite their globally large extent, few studies to date have examined the effects of climate change in desert ecosystems, where biological soil crusts are key nutrient cycling components. The goal of this work was to assess how increased temperature and frequency of summertime precipitation affect the contributions of crust organisms to soil processes. Methods With a combination of experimental 2°C warming and altered summer precipitation frequency applied over 2 years, we measured soil nutrient cycling and the structure and function of crust communities. Results We saw no change in crust cover, composition, or other measures of crust function in response to 2°C warming and no effects on any measure of soil chemistry. In contrast, crust cover and function responded to increased frequency of summer precipitation, shifting from moss to cyanobacteria-dominated crusts; however, in the short timeframe we measured, there was no accompanying change in soil chemistry. Total bacterial and fungal biomass was also reduced in watered plots, while the activity of two enzymes increased, indicating a functional change in the microbial community. Conclusions Taken together, our results highlight the limited effects of warming alone on biological soil crust communities and soil chemistry, but demonstrate the substantially larger effects of altered summertime precipitation

    Seasonally contrasting responses of evapotranspiration to warming and elevated CO2 in a semiarid grassland

    No full text
    Global climate change is expected to alter seasonal patterns and rates of evapotranspiration in dry regions. Although climate change will involve elevated CO2 and increased temperatures, independently, these factors may have different impacts on actual evapotranspiration (AET) due to their opposing effects on transpiration. We used canopy gas exchange chambers to quantify AET in a semiarid grassland experimentally altered by elevated CO2 and warming over 3 years with contrasting ambient precipitation. Seasonal and interannual variations in AET due to background climate variability were larger than the effects of climate manipulation treatments. However, in a year with average precipitation, cumulative growing season AET was suppressed by warming by 23%. Across years, warming increased AET early in the growing season and suppressed it later in the growing season. By contrast, elevated CO2 suppressed AET early in the growing season and enhanced it later, but only in years with average or above-average precipitation. Vegetation greenness (a proxy for photosynthetically active leaf area) was consistently the strongest predictor of AET, whereas soil moisture and vapor pressure deficit were secondary drivers. Our research demonstrates that effects of increased atmospheric CO2 and temperature on AET will be mediated by plant phenological development and seasonal climatic conditions

    Daily and seasonal changes in soil amino acid composition in a semiarid grassland exposed to elevated CO2 and warming

    No full text
    Soil amino acids are often an important source of nitrogen (N) for plants, and anticipated global changes, including climate warming and rising atmospheric CO2 levels, have the potential to alter plant and microbial production and consumption of this N source in soils. We determined soil amino acid composition over a 1-year period at diurnal and seasonal time scales in a multi-factor global change experiment with elevated CO2 and warming in native semiarid grassland. Soil amino acids were collected in April, May and June of 2011 and April 2012 using a soil water perfusion and extraction method that minimized soil disturbance. This was a particular advantage when taking diurnal measurements. The extracts were analyzed by ultra performance liquid chromatography. We detected 16 different soil amino acids throughout the study, and glutamine/glutamate (glu-x), arginine, serine and asparagine/aspartate (asp-x) were consistently at highest relative concentrations, comprising 3–41, 6–20, 2–22 and 7–24 % of total amino acids, respectively. No direct effects of experimental warming or elevated CO2 on soil amino acid composition were observed. However, the relative abundance of individual soil amino acids shifted diurnally and seasonally with changes in soil temperature and soil moisture. Glu-x and arginine increased and serine decreased with higher temperature, while asp-x and serine increased and arginine decreased with higher moisture. Overall, the relative abundances of soil amino acids responded more strongly to both diurnal and seasonal changes in temperature and soil moisture than to elevated atmospheric CO2 and experimental warming

    Data from: Seasonality of soil moisture mediates responses of ecosystem phenology to elevated CO2 and warming in a semi-arid grassland

    No full text
    Vegetation greenness, detected using digital photography, is useful for monitoring phenology of plant growth, carbon uptake, and water loss at the ecosystem level. Assessing ecosystem phenology by greenness is especially useful in spatially extensive, water-limited ecosystems such as the grasslands of the western United States, where productivity is moisture dependent and may become increasingly vulnerable to future climate change. We used repeat photography and a novel means of quantifying greenness in digital photographs to assess how the individual and combined effects of warming and elevated CO2 impact ecosystem phenology (greenness and plant cover) in a semi-arid grassland over an 8-year period. Climate variability within and among years was the proximate driver of ecosystem phenology. Individual and combined effects of warming and elevated CO2 were significant at times, but mediated by variation in both intra- and inter-annual precipitation. Specifically, warming generally enhanced plant cover and greenness early in the growing season but often had a negative effect during the middle of the summer, offsetting the early season positive effects. The individual effects of elevated CO2 on plant cover and greenness were generally neutral. Opposing seasonal variations in the effects of warming and less so elevated CO2 cancelled each other out over an entire growing season, leading to no net effect of treatments on annual accumulation of greenness. The main effect of elevated CO2 dampened quickly, but warming continued to affect plant cover and plot greenness throughout the experiment. The combination of warming and elevated CO2 had a generally positive effect on greenness, especially early in the growing season and in later years of the experiment, enhanced annual greenness accumulation. However, interannual precipitation variation had larger effect on greenness, with 2-3 times greater greenness in wet years than in dry years. Synthesis. Seasonal variation in timing and amount of precipitation governs grassland phenology, greenness, and the potential for carbon uptake. Our results indicate that concurrent changes in precipitation regimes mediate vegetation responses to warming and elevated atmospheric CO2 in semi-arid grasslands. Even small changes in vegetation phenology and greenness in response to warming and rising atmospheric CO2 concentrations, such as those we report here, can have large consequences for the future of grasslands

    Seasonality of soil moisture mediates responses of ecosystem phenology to elevated CO2 and warming in a semi-arid grassland

    No full text
    Vegetation greenness, detected using digital photography, is useful for monitoring phenology of plant growth, carbon uptake and water loss at the ecosystem level. Assessing ecosystem phenology by greenness is especially useful in spatially extensive, water-limited ecosystems such as the grasslands of the western United States, where productivity is moisture dependent and may become increasingly vulnerable to future climate change. We used repeat photography and a novel means of quantifying greenness in digital photographs to assess how the individual and combined effects of warming and elevated CO2 impact ecosystem phenology (greenness and plant cover) in a semi-arid grassland over an 8-year period. Climate variability within and among years was the proximate driver of ecosystem phenology. Individual and combined effects of warming and elevated CO2 were significant at times, but mediated by variation in both intra- and interannual precipitation. Specifically, warming generally enhanced plant cover and greenness early in the growing season but often had a negative effect during the middle of the summer, offsetting the early season positive effects. The individual effects of elevated CO2 on plant cover and greenness were generally neutral. Opposing seasonal variations in the effects of warming and less so elevated CO2 cancelled each other out over an entire growing season, leading to no net effect of treatments on annual accumulation of greenness. The main effect of elevated CO2 dampened quickly, but warming continued to affect plant cover and plot greenness throughout the experiment. The combination of warming and elevated CO2 had a generally positive effect on greenness, especially early in the growing season and in later years of the experiment, enhanced annual greenness accumulation. However, interannual precipitation variation had larger effect on greenness, with two to three times greater greenness in wet years than in dry years. Synthesis. Seasonal variation in timing and amount of precipitation governs grassland phenology, greenness and the potential for carbon uptake. Our results indicate that concurrent changes in precipitation regimes mediate vegetation responses to warming and elevated atmospheric CO2 in semi-arid grasslands. Even small changes in vegetation phenology and greenness in response to warming and rising atmospheric CO2 concentrations, such as those we report here, can have large consequences for the future of grasslands
    corecore