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Antecedent moisture and temperature conditions
modulate the response of ecosystem respiration to
elevated CO2 and warming
EDMUND M . RYAN1 , K IONA OGLE 1 , TAMARA J . ZEL IKOVA2 , DAN R . LECA IN 3 ,

DAV ID G . W ILL IAMS 2 , JACK A . MORGAN3 and ELISE PENDALL2 , 4

1School of Life Sciences, Arizona State University, Tempe, AZ, USA, 2Department of Botany, University of Wyoming, Laramie,

WY, USA, 3USDA-ARS, Fort Collins, CO, USA, 4Hawkesbury Institute for the Environment, University of Western Sydney,

Penrith, NSW, Australia

Abstract

Terrestrial plant and soil respiration, or ecosystem respiration (Reco), represents a major CO2 flux in the global carbon

cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere

CO2 and warming. To address this, we synthesized six years (2007–2012) of Reco data from the Prairie Heating And

CO2 Enrichment (PHACE) experiment. We applied a semi-mechanistic temperature–response model to simulta-

neously evaluate the response of Reco to three treatment factors (elevated CO2, warming, and soil water manipulation)

and their interactions with antecedent soil conditions [e.g., past soil water content (SWC) and temperature (SoilT)]

and aboveground factors (e.g., vapor pressure deficit, photosynthetically active radiation, vegetation greenness). The

model fits the observed Reco well (R2 = 0.77). We applied the model to estimate annual (March–October) Reco, which

was stimulated under elevated CO2 in most years, likely due to the indirect effect of elevated CO2 on SWC. When

aggregated from 2007 to 2012, total six-year Reco was stimulated by elevated CO2 singly (24%) or in combination with

warming (28%). Warming had little effect on annual Reco under ambient CO2, but stimulated it under elevated CO2

(32% across all years) when precipitation was high (e.g., 44% in 2009, a ‘wet’ year). Treatment-level differences in Reco

can be partly attributed to the effects of antecedent SoilT and vegetation greenness on the apparent temperature sensi-

tivity of Reco and to the effects of antecedent and current SWC and vegetation activity (greenness modulated by VPD)

on Reco base rates. Thus, this study indicates that the incorporation of both antecedent environmental conditions and

aboveground vegetation activity are critical to predicting Reco at multiple timescales (subdaily to annual) and under a

future climate of elevated CO2 and warming.
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Introduction

Terrestrial plant and soil respiration, or ecosystem res-

piration (hereafter, Reco), represents a major CO2 flux in

the global carbon cycle. Plant, root, and microbial respi-

ration together account for approximately 118.7

Gt C yr�1, which is ~95% of the carbon that is assimi-

lated through photosynthesis (Roy et al., 2001; Frie-

dlingstein et al., 2006; Canadell et al., 2007; Beer et al.,

2010; Harmon et al., 2011; Arora et al., 2013). Although

ecosystem respiration is a major component of the glo-

bal carbon cycle, the effects of elevated atmosphere

CO2 and warming on Reco remain uncertain. In particu-

lar, soil respiration accounts for ~90% of Reco in temper-

ate grasslands, and the influence of global change on

this component of the global carbon budget is poorly

constrained (Xiao et al., 2003; Pendall et al., 2004; Wil-

liams et al., 2005; Hui et al., 2008). Thus, global change

experiments provide critical data to help constrain pre-

dictions of future changes in soil and ecosystem respi-

ration, both of which are expected to have a large

impact on the medium- to long-term carbon sequestra-

tion potential of the terrestrial biosphere.

The effect of warming on soil and ecosystem respira-

tion is difficult to predict (Cox et al., 2000; Davidson

et al., 2006), and the results from warming studies are

often contradictory and vary according to biome and

latitude. For example, a meta-analysis of 306 studies

conducted between 1989 and 2008 found that soil respi-

ration was generally positively correlated with increas-

ing air temperature, although there was much variation

in the strength of this relationship (Bond-Lamberty &

Thomson, 2010). Conversely, a different meta-analysis

found no consistent effects of temperature on soil
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respiration across 17 experimental warming studies,

and in three grassland sites, factors other than warming

explained differences in soil respiration (Rustad et al.,

2001). Other factors that drove soil respiration

responses to warming included changes in growing

season length, enhanced nutrient availability, shifts in

species composition, and altered soil water, many of

which are generally not accounted for in terrestrial

carbon cycle models (Luo, 2007).

In contrast to the inconsistent effects of warming, ele-

vated CO2 has been shown to stimulate various compo-

nents of Reco, including soil respiration, in many

ecosystems (Dieleman et al., 2012). For example, in a

deciduous temperate forest in eastern Tennessee, USA,

elevated CO2 stimulated heterotrophic respiration (by

10% over three years) and total soil respiration (nearly

40% over 1.5 years) in a FACE (Free Air and CO2

Enrichment) study and an open-top chamber experi-

ment (Norby et al., 2002; Wan et al., 2007), respectively.

Elevated CO2 also simulated soil respiration (by 20%

over seven years) at a pine forest FACE site in North

Carolina, USA (Bernhardt et al., 2006). Similarly, in a

semiarid Colorado grassland, soil respiration increased

under elevated CO2 by ~25% in a wet year and ~85% in

a dry year (Pendall et al., 2003). This CO2 stimulation

effect has been attributed to enhanced decomposition

following increased substrate availability and soil mois-

ture, increasing both autotrophic and heterotrophic

components of soil respiration (Adair et al., 2011;

Pendall et al., 2013).

Terrestrial ecosystem models require accurate repre-

sentations of the interacting effects of climate change,

yet the coupled belowground–aboveground responses

underlying Reco are poorly documented. Applying the

ORCHIDEE model to data from 108 sites over a 20-year

period, Piao et al. (2008) found that warming had a

large positive effect on Reco in the autumn and a small

positive effect in the spring at northern high latitudes.

The effects of warming, however, can be mediated by

precipitation, with profound effects on terrestrial car-

bon fluxes. For example, Ciais et al. (2005) found that

Reco decreased by 77 gC m�2 yr�1 (~12%) across Eur-

ope as a result of rainfall deficit and extreme summer

heat during the European heat wave of 2003. This

decrease in Reco was attributed to reductions in gross

primary production and heterotrophic respiration, both

of which were primarily driven by reductions in soil

water content.

To accurately describe and predict the effects of cli-

mate change on Reco, models should incorporate

aboveground processes and antecedent factors as driv-

ers of belowground responses (Reichstein et al., 2003;

H€ogberg & Read, 2006; Bardgett, 2011). For instance,

shading and tree girdling experiments demonstrate

the importance of photosynthesis drivers (e.g., light)

for soil respiration (Craine et al., 1999; H€ogberg et al.,

2001; H€ogberg & Read, 2006). Moreover, Reco is very

responsive to the effects of past conditions, such as

antecedent soil water content or lagged precipitation

(Huxman et al., 2004; Xu et al., 2004; Harper et al.,

2005; Chou et al., 2008; Dezi, 2011; Oikawa et al.,

2014). For example, soil respiration was enhanced fol-

lowing a rain event, especially if the previous week or

month was dry (Xu et al., 2004; Cable et al., 2008; Bar-

ron-Gafford et al., 2014). These antecedent effects,

however, can vary across diurnal, weekly, and

monthly timescales (Vargas et al., 2011; Cable et al.,

2013). In general, above- and/or belowground ante-

cedent environmental conditions can explain spatial

variation in soil respiration or Reco (Barron-Gafford

et al., 2014; Oikawa et al., 2014) and are likely to inter-

act with elevated CO2 and warming (Polley et al.,

2013).

Many studies have documented the singular effects

of elevated CO2 and warming (Rustad et al., 2001; Nor-

by & Zak, 2011), but these factors are expected to inter-

act to affect Reco, and the outcome of those interactions

is unclear (Pendall et al., 2004). Multifactor experi-

ments that evaluate combined effects of elevated CO2

and warming on soil and ecosystem respiration in nat-

ural ecosystems are rare, especially over longer time-

scales (Dieleman et al., 2012). We addressed this

knowledge gap by asking the following questions: (i)

What are the consequences of warming, elevated CO2,

and altered soil moisture for Reco over annual and

multiyear timescales? (ii) How important are current

and antecedent environmental factors (e.g., soil water

and soil temperature) for understanding variation in

Reco and its long-term response to warming and ele-

vated CO2? Likewise, (iii) how important are above-

ground factors (e.g., indices of plant activity) for

predicting variation in Reco and its response to warm-

ing and elevated CO2?

To rigorously address our research questions, we

conducted a unique analysis involving six years of Reco

data and associated below- and aboveground covari-

ates generated from a multifactor global change experi-

ment conducted in a mixed-grass prairie in Wyoming.

We employed a novel Bayesian statistical analysis that

analyzed these data in the context of a semi-mechanis-

tic model, and which simultaneously quantified the

potential impacts of elevated CO2 and warming on the

base rate (i.e., Reco at a given temperature) and the

apparent temperature sensitivity of Reco. The model

structure also allowed us to explore how CO2 and

warming interacted with antecedent soil water, ante-

cedent temperature, and aboveground indices of vege-

tation activity to affect Reco and its component
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responses. Moreover, the hierarchical Bayesian frame-

work was constructed to accommodate the experimen-

tal design, to allow for a rigorous quantification of the

antecedent effects, and to propagate uncertainty in our

model and parameter estimates to obtain realistic esti-

mates of annual CO2 efflux.

Materials and methods

Site description

The Prairie Heating and CO2 Enrichment experiment is

located in a temperate, mixed-grass prairie near Cheyenne,

Wyoming (elevation = 1930 m). The site has a semiarid cli-

mate, characterized by moderately long winters and relatively

warm summers. Mean monthly temperature varies from

�2.5 °C in January to 17.5 °C in July, and mean annual precip-

itation is 384 mm (Morgan et al., 2011). Over 75% of the vege-

tation cover consists of the C3 grasses western wheatgrass

(Pascopyrum smithii (Rydb.) A. L€ove) and needle-and-thread

grass (Hesperostipa comata Trin and Rupr), and the C4 perennial

grass blue grama (Bouteloua gracilis (H.B.K.) Lag). The soil is a

fine-loamy, mixed, mesic Aridic Argiustoll, and biological

crusts are not present (Bachman et al., 2010).

Experimental design

The PHACE experiment involves an incomplete factorial

design with 30 plots randomly assigned to six treatments, with

five plots per treatment level (Parton et al., 2007). The circular

plots (3.4 m diameter) are separated from surrounding soil by

a plastic flange buried to a depth of 60 cm (Bachman et al.,

2010). The six treatments – denoted as ct, cT, Ct, CT, ct-d, and

ct-s – involve different combinations of atmospheric CO2

[ambient at 380–400 ppm (denoted as ‘c’) vs. elevated at

600 ppm (‘C’)], temperature [ambient/not heated (‘t’) vs.

heated by 1.5 (day) or 3.0 (night) ̊C (‘T’)], and watering [none

vs. shallow (‘s’) or deep (‘d’) irrigation, which are only applied

under ambient CO2 and temperature (‘ct’)]. The goal of the

irrigation treatments was to increase soil moisture to approxi-

mately match that of the Ct plots by irrigating when soil mois-

ture fell below 85% of Ct at 5–25 cm depth. In 2007, the

shallow irrigation plots received an equivalent of 18 mm of

precipitation on 5 irrigation dates in 2007, the equivalent of

90 mm of additional growing season precipitation. From 2008

to 2011, irrigated plots received an equivalent of 21 mm of

precipitation three times during the growing season (equiva-

lent to 63 mm of additional precipitation), and in 2012, 65 mm

of water was added four times during the growing season

(equivalent to 260 mm). The ct-d plots were irrigated with the

same total amount as the ct-s plots received the previous sum-

mer, but applied in fall and spring. Free Air CO2 Enrichment

(FACE) technology (Miglietta et al., 2001) was used to raise

atmospheric CO2 to 600 ppm in the Ct and CT plots. A cera-

mic heater system using a proportional–integral–derivative
(PID) feedback loop (Kimball, 2005) was used to raise temper-

atures in the cT and CT plots.

Data description

All data were measured in the field from 2007 to 2012 and con-

sisted of Reco (lmol m2 s�1), associated soil temperature

(SoilT), volumetric soil water content (SWC), and aboveground

factors consisting of ecosystem phenology (‘greenness’), photo-

synthetically active radiation (PAR), air temperature, and rela-

tive humidity. One Reco chamber frame was established in each

plot, and Reco was measured on 96 days over six growing sea-

sons, each spanning the period between May and September.

Measurement days were typically separated by 2–4 weeks;

approximately every 6 weeks, Reco was measured using a can-

opy gas exchange chamber (Jasoni et al., 2005; Bachman et al.,

2010) five times during the day in each plot (nominal

times = 04:00, 09:00, 12:00, 16:00 and 21:00); otherwise, a single

plot-level measurement was made at midday. Soil thermocou-

ples were installed at depths of 3 and 10 cm to record hourly

SoilT (type-T thermocouples). SWCwasmeasured at a depth of

5–15 cm on an hourly basis (EnviroSMART probe; Sentek Sen-

sor Technologies, Stepney, Australia), but daily averages were

computed for this analysis because, with the exception of days

receiving precipitation, SWC showed little diurnal variation,

and Reco measurements were not made around precipitation

events. A weather station at the site recorded air temperature,

relative humidity, and PAR. Vegetation greenness was quanti-

fied every 2–4 weeks between March and October, resulting in

71 separate greenness measurement days spanning 2007–2012;
photographs were taken for all 30 plots on each measurement

day using a 2-m-high camera stand and a 1-m2 ground frame.

SAMPLEPOINT software (Booth et al., 2006, www.samplepoint.org)

was used to quantify parts of the photograph that were not veg-

etation (i.e., soil or litter) and to classify the different species of

grass. Greenness (Gness) was quantified by converting the

image pixels within each photograph to a matrix of numbers

using MATLAB R2011a and quantifying the hue, saturation,

and value scales for the detection of green. It varies from 0

(absence of green biomass) to 1 (plot is completely covered with

green biomass). See Zelikova et al. (accepted) for full details on

how greenness was quantified.

Gap-filling of environmental data

The SWC, SoilT, and micrometeorological data had occasional

missing time periods or days due to instrument failure (<1%,

6%, and 2.5% for the micrometeorological, SWC, and SoilT data,

respectively). We primarily used data from a nearby plot of the

same treatment to gap-fill soil moisture and temperature, and

cubic spline interpolation was used to gap-fill the missing

micrometeorological data. Since the dates when repeat plot pho-

tographs were taken for vegetation greenness did not coincide

with days when Reco was measured, linear interpolation was

employed to estimate greenness on Reco measurement days. See

Appendix S1 for full details of these gap-filling procedures.

Data synthesis and modeling

We synthesized the Reco data in the context of a nonlinear

mixed effects model that allowed us to quantify how the

© 2015 John Wiley & Sons Ltd, Global Change Biology, 21, 2588–2602
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experimental treatments influenced Reco, and how they inter-

acted with current and antecedent SoilT, SWC, and above-

ground factors (e.g., vegetation greenness) to affect different

properties of the Reco response. Given the distributional prop-

erties of the observed Reco data (i.e., Reco > 0 and variance

often increased with mean) and previous studies (Cable et al.,

2008, 2011, 2013), we assumed that the observed Reco data

(Reco
obs) follow a log-normal distribution such that for treat-

ment t (t = 1, . . . , 6) and measurement time i [i = 1, . . . , Nt,

where Nt is the number of observations for treatment t, which

varied from 531 (Ct) to 659 (ct-d)]:

logðRobs
ecoi;t

Þ�NormalðlLRi;t; r
2
LRÞ ð1Þ

where lLR is the mean or predicted log(Reco) and r2LR repre-

sents the observation variance.

Note that time i represents a specific day (d) and hour (h) of

the experiment for convenience, except when it is necessary to

explicitly specify the corresponding day and hour.

We employ a semi-mechanistic, nonlinear process model

for lLR that is a modification of an Arrhenius-type tempera-

ture function (Lloyd & Taylor, 1994). On the log scale, lLR is

lLRi;t ¼ LRbi;t þ Eoi;t

1

283:15� Tot

� 1

SoilTi;p � Tot

� �
ð2Þ

where Rbasei;t = exp(LRbi,t) is the base respiration rate at

10 °C (283.15 Kelvin), Eo is analogous to an energy of activa-

tion, but when Eqn (2) is applied to field observations of

Reco, Eo provides an index of the apparent temperature sen-

sitivity of Reco (Davidson & Janssens, 2006; Sierra, 2012). The

interpretation of To is less straightforward, but it is also

related to apparent temperature sensitivity, and we allow To

to vary by treatment level. Soil temperature was measured

at two depths (3 and 10 cm), and SoilT was estimated as a

weighted average of each depth’s temperature, with wt and

(1 – wt) representing the treatment-specific relative impor-

tance (weight) of the 3 and 10 cm depths, respectively; wt is

a parameter to be estimated.

We specify linear mixed effects models for Rbasei;t and Eoi;t to

incorporate the potential influence of current and antecedent

soil and aboveground drivers on these two components of the

Reco response. For example, antecedent SWC (SWCant) has

been found to significantly affect soil respiration in arid sys-

tems (Cable et al., 2008, 2013; Barron-Gafford et al., 2014), and

the inclusion of antecedent soil temperature (SoilTant) allows

for the apparent temperature sensitivity (Eo) to acclimate to

prevailing temperature conditions (Luo et al., 2001). The

importance of including aboveground (ABG) factors for pre-

dicting Reco and/or Eo has been highlighted in several places

(Reichstein et al., 2003; H€ogberg & Read, 2006; Bardgett, 2011),

in particular, PAR (Craine et al., 1999), vapor pressure deficit

(VPD) (Carbone et al., 2008; Cable et al., 2013), indices of vege-

tation activity or greenness (Pendall et al., 2001; Cable et al.,

2012), and photosynthetic activity (Drake et al., 2011; Barron-

Gafford et al., 2014). We did not measure photosynthesis on

the Reco measurement days, but we incorporated proxies of

aboveground plant activity in two ways: (i) A main effect of

vegetation greenness (Gness) was included such that above-

ground activity was assumed to be proportional to Gness, and

(ii) interactions between Gness, VPD, and PAR were included,

reflecting potential controls of these environmental factors on

photosynthesis. Thus, Eo is given by

Eoi;t ¼ a0;t þ a1;tSWCi;t þ a2;tSWCanti;t þ a3;tSWCi;t � SWCanti;t

þ a4;tSoilTanti;t þABGi;t þ �plot

ð3Þ

ABGi;t ¼ ða5;tPARanti;t þ a6;tVPDanti;t þ a7;tPARanti;t � VPDanti;t Þ
�Gnessi;t þ a8;tGnessi;t

ð4Þ
where eplot represents a plot random effect. The expression

for LRbi,t is the same as that of Eoi;t , except that there is no

SoilTanti;t term, and it has its own set of parameters, labeled

b0, . . ., b7, with b4–b7 corresponding to the aboveground

effects in Eqn (4).

Quantification of antecedent drivers

We employ a novel stochastic modeling approach (Ogle et al.,

2015) to define the antecedent driving variables, as adopted by

Cable et al. (2013) and Barron-Gafford et al. (2014). This new

approach differs from a more ‘standard’ approach that com-

putes the antecedent variables prior to the data analysis, often

by averaging the daily or hourly variables over a specified

time period. Here, we allow the Reco data to determine the rel-

ative importance of each variable at different past time peri-

ods. Based on exploratory analyses, and following Cable et al.

(2013), we assumed that Reco was influenced by SoilT and the

aboveground covariates over daily timescales and by SWC

over weekly timescales that integrate over past precipitation

events. Thus, VPDant, PARant, and SoilTant were modeled as

weighted averages of the corresponding observed daily values

over the past seven days; likewise, SWCant was modeled as a

weighted average of the observed weekly SWC over the past

10 weeks. Let X denotes one of the daily timescale variables

(X = VPD, PAR, or SoilT); we first computed the 24-h means

for each variable (�X) based on the observed hourly values. The

antecedent variable (Xant) is expressed as a weighted average

of the past daily mean values such that for an Reco observation

made on plot p and at time i:

Xanti;p ¼
XNperiods

k¼1

WXk;p
�XtpðiÞ�k;p ð5Þ

where tp(i) represents the 24-h time period associated with

Reco observation i. For example, if an observation of Reco was

made at 9:00 am on day 10, then the associated tp covers 9:00

am on day 9 to 9:00 am on day 10; k = 1 refers to the previous

24-h time period (e.g., 9:00 am day 8 to 9:00 am day 9), and

similar for k = 2, 3, . . ., Nperiods. VPDant and PARant are not

indexed by p as these data are site specific rather than plot

specific. We do not specify the values for the weights (WX) as

they are parameters to be estimated. The formula for SWCant

is similar to Eqn (5) except that the time period (k = 1, . . .,

Nperiods) is on the weekly scale. To reduce the number of

weights associated with SWCant, we assigned individual

weights to each of the first four weeks into the past, the fifth

© 2015 John Wiley & Sons Ltd, Global Change Biology, 21, 2588–2602
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weight to past weeks 5 and 6, and the sixth weight to past

weeks 7–10.

Bayesian framework and prior distributions

The above model is nonlinear because it is based on the Ar-

rhenius-type temperature–response function, with mixed

effects associated with the plot random effects and fixed

effects for the different treatment levels and for the continu-

ous environmental and aboveground covariates. We fit this

model via a hierarchical Bayesian framework to accommo-

date the nonlinear model and the experimental design, and

to explicitly estimate sources of variability due to observa-

tion error, model or process error, and parameter uncer-

tainty (Clark, 2003; Ogle & Barber, 2008; Cressie et al., 2009;

Parslow et al., 2013). This approach produces posterior dis-

tributions for all stochastic quantities of interest, and we

summarize their marginal posteriors by reporting posterior

means, 95% credible intervals (CIs), and Bayesian P-values

(Gelman et al., 2003).

The Bayesian approach also allows us to incorporate prior

information. For example, based on the extensive synthesis

conducted by Lloyd & Taylor (1994) on the response of soil

respiration to temperature, we constructed semi-informative

priors for a0 [base rate parameter of Eo in Eqn (3)] and To

[Eqn (2)]. Specifically, we assumed a0,t ~ Normal(308.56,1000)

and To ~Normal(227.13,1000). Lloyd & Taylor (1994) also state

that To can only lie between 0 K and the minimum observed

SoilT; thus, the Normal prior for To was also truncated to the

interval [0, 261]. With no specific information on the parame-

ters a1–a8 and b0–b7 in Eqns (3) and (4), independent and dif-

fuse Normal distributions were used as priors for each. The

plot-level random effects [e’s, Eqn (3)] for the Eo and LRb

functions were assigned normal priors with a zero mean and

variances given by r1
2 and r2

2 for Eo and LRb, respectively.

Uniform priors were assigned to the standard deviations,

including that associated with the observation error in

Eqn (1), such that rk ~U(0,150) (k = 1,2) and rLR ~U(0,10). Di-

richlet priors were used for the vectors of antecedent weights

in Eqn (5), thus obeying the constraint that the WX’s must

sum to one across past time periods (k = 1, . . ., Nperiods) and

ensuring that 0 ≤ WX k ≤ 1 for all variables X, treatment levels

t, and times into the past k.

Alternative model formulations

We refer to the above model as the ‘main’ model. Two other

models were implemented evaluate the importance of includ-

ing antecedent and/or aboveground effects. The first alterna-

tive model did not include any of the aboveground covariates

[i.e., the ABG term was excluded in Eqn (3)], while the other

model did not include any antecedent covariates [i.e., all terms

with a subscript ‘ant’ in Eqns (3) and (4) were removed]. A

fourth model that included an extra term in Eqn (2) to account

for day random effects, in addition to plot random effects, was

also considered. As the predicted day random effects showed

no temporal structure, this model was not included in our

final analysis.

Model implementation and assessment

We used the software package OPENBUGS (Lunn et al., 2009) to

implement the Bayesian analysis of the main model and the

three model variants. OPENBUGS uses Markov chain Monte Car-

lo (MCMC) techniques to sample from the joint posterior of

the model parameters, and we ran three parallel chains for

each model. Depending on the model, the number of itera-

tions per chain varied from 50 000 to 550 000, with the first

1000–50 000 iterations discarded as burn-in, and the amount

of thinning ranged from every 10th to 500th iteration to suffi-

ciently reduce autocorrelation in the chains and to reduce stor-

age requirements. This produced 3000 independent samples

from the posterior distribution for each parameter, for each

model. Convergence was assessed using the built-in Brooks–
Gelman–Rubin diagnostic tool (Gelman et al., 2003).

We assessed the ability of each model to fit the observed

Reco data by plotting observed vs. predicted Reco values. The

coefficient of determination (R2) and the coefficients of the cor-

responding regression line give an informal evaluation of rep-

licative performance (i.e., ‘goodness of fit’). We also computed

posterior predictive loss (D), a model comparison statistic,

which is the sum of a goodness-of-fit term (G) and a model

complexity penalty term (P) (Gelfand & Ghosh, 1998). One

model is more desirable over another if it has a lower D value,

which can result from a lower G value (better fit) and/or a

lower P value (less complex).

Estimates of annual Reco

We used the posterior results from the main model to obtain

hourly estimates of Reco for each treatment level. This was

accomplished by sampling model parameters from their joint

posterior distribution and computing hourly, treatment-level

Reco based on Eqns (2)–(5), with eplot = 0, and given hourly

observations of the covariates (i.e., SWC, SoilT, Gness, VPD,

PAR). These hourly values were summed to obtain posterior

predictive distributions of treatment-level daily and annual

(March–October) Reco. The annual estimates were also

summed to obtain predicted annual Reco over the six-year

study period.

Moreover, the majority of models do not include antecedent

variables in Reco. To quantify the effect of ignoring antecedent

conditions, we also computed annual and 6-year Reco sums

based on the model lacking antecedent effects [i.e., only had

current SWC and Gness as covariates in Eqns (3) and (4)] and

compared these estimates to those obtained from the main

model (above).

Results

Assessment of model performance

The main model accurately predicted ecosystem respi-

ration (Reco) over the entire set of observations

(R2 = 0.77). However, the goodness of fit varied among

the treatments, with R2 ranging from 0.84 (cT) and 0.79

(ct) to 0.63 (CT) (Fig. 1). The treatment-level differences
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in model fit are also illustrated in time series plots of

observed vs. predicted log(Reco) (see Fig. 2 for 2009 and

Fig. S1a–e for remaining years). For any year, <5% of

the observations fell outside of the predicted 95% credi-

ble intervals, and at least three quarters of these were

underpredicted by the model, with the majority occur-

ring between June and August. The inclusion of the

aboveground and antecedent covariates was important

for predicting Reco, and exclusion of either notably

reduced model fit (R2 = 0.68 and 0.64, respectively) and

increased posterior predictive loss. The likely reasons

for the variations in model performance among

treatments are discussed in the Appendix S2).

Treatment effects on Reco

We assessed treatment effects on annual (March–Octo-

ber) ecosystem respiration values (Fig. 3). Elevated

CO2 increased annual ecosystem respiration (Reco;

Fig. 3; ct vs. Ct or cT vs. CT, Bayesian P < 0.05 in 2008,

2009, 2011 and 2012, P < 0.10 in 2007 and 2010). The

combination of warming and elevated CO2 stimulated

Reco compared to the control (Fig. 3) when aggregated

over the six years (2007–2012, P = 0.03) and in five of

the six years when considered individually (P < 0.09

in 2007, 2008 and 2009; P < 0.04 in 2011 and 2012).

Recall that the shallow irrigation treatment (ct-s) was

applied such that the soil water content (SWC) was

roughly the same as that of the elevated CO2 treatment

(Ct); the deep irrigation (ct-d) applied was the same

amount as the surface irrigation from the previous

year. There was no difference (P > 0.2) in annual Reco

between the elevated CO2 treatment and either irriga-

tion treatment (Ct vs. ct-d or Ct vs. ct-s) for any of the

years or when aggregated over the six-year period

(Fig. 3). When compared to the control treatment, irri-

gation did enhance annual Reco for three years (Fig. 3;

P = 0.03 in 2007 for ct vs. ct-s, P = 0.06 in 2011 for ct

vs. ct-d, P = 0.001 and 0.006 in 2012 for ct vs. ct-d and

ct vs. ct-s, respectively).

Fig. 1 Observed vs. predicted log(Reco) for each treatment. The predicted values are the posterior means and central 95% credible inter-

vals for replicated observations (Gelman et al., 2013) of log(Reco), based on Eqns (1) and (2). Treatments codes involve combinations of:

c (ambient CO2), C (elevated CO2), t (no warming), T (warming), d (deep irrigation), or s (shallow irrigation).
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Fig. 2 Time series of predicted log(Reco) for each treatment in 2009, represented by the posterior means for the daily values (black line)

and central 95% credible intervals on the hourly time-scale (grey region). The circles denote observations of log(Reco). See Fig. 1 legend

for treatment codes. Time series for the other years are presented in Fig. S1a–e.

Fig. 3 Annual Reco for each treatment and each study year and across all six years is shown. Bars denote the posterior means and the

error bars represent the central 95% credible intervals. The letters inside the bars indicate statistically significant (at the 5% level) differ-

ences among treatments, and the Bayesian P values for significantly different treatment pairs are provided in each panel. The results

for 2010 are not shown since they look very similar to the 2007 results. See Fig. 1 legend for treatment codes.
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We also evaluated treatment effects on Reco over

shorter timescales by assessing temporal changes in

pairwise differences of daily Reco for key pairs of treat-

ments (Fig. 4). This analysis indicated that the daily

predicted Reco was consistently enhanced under ele-

vated CO2 (Fig. 4b). Warming increased and decreased

Reco by approximately equal amounts within each sea-

son, but there were no consistent seasonal trends. Fur-

thermore, the magnitude of the warming response was

substantially less than under elevated CO2, except for

the wettest year of 2009 where warming resulted in

greater increases in Reco (Fig. 4c). For 2009 only, the

combined effect of warming and elevated CO2

enhanced Reco to a greater extent than singularly under

elevated CO2, but the effects of the two elevated CO2

treatments (Ct and CT) were comparable for the

remaining years (Fig. 4b vs. Fig. 4d). The Reco daily dif-

ferences between Ct and each of the two irrigation

treatments (ct-s and ct-d) were not consistently positive

or negative throughout the study period (Fig. 4f). In

addition, for the irrigation treatments vs. ambient con-

ditions (ct), the timing and magnitude of the irrigation

effect (Fig. 4e) was similar to that of the CO2 effect

(Fig. 4b).

Importance of current and antecedent soil conditions for
understanding treatment effects on Reco

Increases in current soil water content (SWC) are

expected to increase the respiration base rate (Rbase),

and this positive effect was similar for all treatments

(Fig. 5d; Table 1, P < 0.001). By contrast, current SWC

did not affect the apparent temperature sensitivity of

Reco (i.e., Eo), which was also consistent across treat-

ments (Fig. 5a; Table 1). Antecedent soil water content

and antecedent soil temperature, either singly (SWCant

or SoilTant) or in combination with current conditions

(SWC9SWCant), were also important predictors of Reco

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 4 Time-series of posterior means of daily contrasts to evaluate treatment-level differences in daily predicted Reco. (a) Posterior

means for daily Reco under the ambient treatment (ct) are shown for reference. Five different treatment contrasts were computed: (b)

effect of CO2: (Ct+CT)/2 – (ct+cT)/2; (c) effect of warming: (cT+CT)/2 – (ct+Ct)/2; (d) combined CO2 and warming effect: CT – ct; (e)

effecting of watering relative to ambient conditions: (cts+ctd)/2 – ct; (f) effect of watering relative to elevated CO2: (cts+ctd)/2 –Ct. For

ease of presentation, the credible intervals are not shown. For panels (b)–(f), the dark grey region indicates a positive treatment effect,

while the light grey region denotes a negative effect. Panel (g) shows the site level cumulative precipitation for each year.
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(Table 1, gray and black squares). The importance of

the SWC9SWCant term means that wet periods in the

past (high SWCant) were associated with higher base

respiration rates (b2 > 0; Table 1); however, if a rain

event occurred during a wet period, the response of

Reco to this increase in current SWC was dampened

compared to the increase in Reco following an event

occurring during a dry period (b3 < 0; Table 1).

Antecedent belowground effects on Reco differed

among treatments. Apparent temperature sensitivity

(Eo) was reduced during warm periods (a4 < 0, Table 1),

but the size of the reduction was larger for the elevated

CO2 treatments compared to the ambient treatments

(Fig. 5b; ct vs. Ct or cT vs. CT, Bayesian P = 0.013 and

P < 0.001, respectively). The respiration base rate

(Rbase) was enhanced as antecedent soil water increased

(b2), but the enhancement was less pronounced under

elevated CO2 (ct vs. Ct or cT vs. CT, P = 0.01 and

P < 0.001, respectively). Under the combined effect

of elevated CO2 and warming relative to the control

treatment, the changes in Reco were most pronounced

for every unit increase in either three of the below-

ground antecedent terms – antecedent soil water con-

tent (SWCant), the interaction between current and

antecedent soil water content (SWC9SWCant), and the

antecedent soil temperature (SoilTant) – compared to

increases in any of the other model terms (P < 0.001 for

SoilTant, Fig. 5b; P = 0.001 for SWCant; P = 0.02 for

SWC9SWCant, Fig. 5e). These findings suggest that dif-

ferences in annual Reco among under elevated CO2 and

the combined effect of elevated CO2 and warming

(Fig. 3) are most likely driven by differential effects of

antecedent soil water (SWCant and SWC9SWCant) and

antecedent soil temperature (SoilTant).

Importance of aboveground factors for understanding
treatment effects on Reco

The aboveground covariates – namely antecedent pho-

tosynthetically active radation (PARant), antecedent

Table 1 Summary of posterior estimates and Bayesian P-values for the effects parameters in the models for Eo (a parameters) and

log(Rbase) (b parameters) [see Eqn (3)]. Black cells indicate P ≤ 0.001, dark gray indicates 0.001 < P ≤ 0.01, light gray indicates

0.01 < P ≤ 0.05, and white indicates P > 0.05. The signs (+ or �) indicate whether an effect is positive or negative. For a particular

effect parameter, the letters in the cells indicate significant treatment differences such that if two treatments do not share the same

letter, P < 0.01 for the associated treatment difference. See Fig. 1 legend for treatment codes
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vapor pressure deficit (VPDant), and vegetation green-

ness (Gness) – and their interactions [Eqn (4)] are

important for predicting Reco (Table 1, gray and black

squares). However, their importance is less than those

of the belowground covariates – namely current and

antecedent soil water content and antecedent soil tem-

perature (SWC, SWCant, and SWC*SWCant, SoilTant;

Table 1). Aboveground covariates generally had

greater influence on the Rbase rather than the Eo com-

ponent of Reco (Fig. 5c,f; Table 1). Of the aboveground

covariates, vegetation greenness was the most impor-

tant one influencing the apparent temperature sensi-

tivity of Reco (Eo) such that increases in it increased

the apparent temperature sensitivity of Reco. However,

the strength of the vegetation greenness effect on Reco

varied among treatments (Table 1). Conversely, vege-

tation greenness and its interactions with antecedent

PAR and antecedent VPD were the most important

predictors of the respiration base rate (Rbase), suggest-

ing that Rbase is more strongly coupled to photosyn-

thesis than to the amount of active vegetation present

(vegetation greenness; Table 1). Although the direction

(positive or negative) of each aboveground effect was

consistent across treatments, the magnitude and

relative importance of the effects of the aboveground

factors on Rbase varied among treatments. For exam-

ple, the interactive effect of antecedent photosyntheti-

cally active radiation, antecedent vapor pressure

deficit, and vegetation greenness (PARant9VPDant9G-

ness) is positive for all six treatments (i.e., b6>0,
Table 1), but b6 is more positive under the interaction

of elevated CO2 and warming (Fig. 5f).

Quantifying the timescales of the antecedent effects

The effect of antecedent vapor pressure deficit (VPD)

on Reco varied across time. Specifically, VPD conditions

experienced the first three (of seven) days prior to the

Reco measurement were the most important for predict-

ing Reco; that is, these days were associated with the

highest weights [WX, Eqn (5)] for all treatments, with

days 1 (yesterday) and 3 into the past having the

greatest importance under the ct, CT, Ct, and CT

treatments (Fig. S2). For the other three antecedent

(a) (b) (c)

(d) (e) (f)

Fig. 5 Posterior means and central 95% credible intervals (CIs) of a subset of effects parameters in the Eo model (panels a–c) and the

log(REbase) model (panels d–f). Covariates shown include current soil water content (SWC), antecedent soil temperature (SoilTant), ante-

cedent vapor pressure deficit (VPDant), vegetation greenness (Gness), and antecedent soil water content (SWCant). The dashed horizon-

tal line represents zero, and 95% CIs that overlap with zero indicate a non-significant effect. See Fig. 1 legend for treatment codes.
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covariates – namely antecedent soil water content,

antecedent soil temperature, and antecedent photosyn-

thetically active radiation (SWCant, SoilTant, and

PARant) – the weights tended to be indistinguishable

across all treatments and past time periods (Fig. S2).

Consequences of not including antecedent effects

Excluding antecedent conditions from the Reco model

generally resulted in increases in the predicted, annual

6-year Reco, increasing 3.9% under deep irrigation (ct-

d), 7.7% under the control treatment (ct), ~10% under

warming (cT) and elevated CO2 (Ct), and 17.8% under

surface irrigation (ct-s). The only exception was the

combined CO2 and warmed treatment (CT) treatment,

where exclusion of antecedent effects resulted in a 3.6%

reduction in the predicted 6-year Reco.

Discussion

Consequences of warming, elevated CO2, and altered soil
moisture for Reco over annual to multiyear timescales

Our Bayesian synthesis approach allowed us to simulta-

neously evaluate the importance of multiple environ-

mental and biotic drivers at different timescales. Thus,

our analysis provided insight into to annual and multi-

year effects of global change treatments, seasonal,

weekly, and daily effects of antecedent conditions and

vegetation activity, and daily and subdaily effects of

concurrent changes in above- and belowground envi-

ronmental conditions on Reco. The analysis also allowed

us to partition the effects of these environmental and

biotic factors on the apparent temperature sensitivity

(Eo) vs. the respiration base rate (Rbase), thus providing

insights into potential mechanisms affecting Reco over

these different timescales. Additionally, our stochastic

approach to incorporating antecedent covariates has

been implemented in only a handful of very recent

studies, and this approach is expected to provide more

realistic inferences about the importance of past

conditions.

Our model of hourly and annual Reco suggests that

annual Reco is stimulated under elevated CO2 in four of

the six years of the PHACE experiment at the 5% level

of statistical significance, resulting in an overall stimu-

lation across the 2007-2012 study period. These findings

are consistent with a recent PHACE study that used a

linear interpolation technique to obtain annual Reco

sums for 2007–2010 (Pendall et al., 2013), which

reported elevated CO2 effects under both ambient and

increased temperature conditions. In contrast, we

mainly found that elevated CO2 stimulated Reco only

under warming. When warming was combined with

elevated CO2, Reco increased across most of the dura-

tion of the PHACE experiment, but against our initial

expectations, warming by itself did not significantly

affect annual Reco. This appears to be in contrast to the

findings of Pendall et al. (2013), who showed a signifi-

cant main effect of warming on annual Reco for two

(2007 and 2010) of the four years in their study. How-

ever, our results also suggest a trend toward the

enhancement of Reco under warming, but due to our

more thorough error propagation, the associated higher

uncertainty estimates resulted in fewer significant

warming and elevated CO2 effects. In particular, our

method builds on the analysis of Pendall et al. (2013) by

employing a more process-based modeling approach

that quantifies the environmental drivers of Reco, in

addition to treatment effects. Such process-based mod-

els are recommended for gap-filling time series data

(Desai et al., 2008). Thus, we used our model to esti-

mate hourly Reco on nonmeasurement days, enabling

us to represent daily and subdaily variation in Reco.

Furthermore, our Bayesian approach also allowed for

the propagation of the uncertainty associated with

these hourly estimates, thus providing potentially more

realistic estimates of the range of possible annual Reco

values.

An important contribution of our analysis involving

six years of data is that the effects of warming differed

between wet and dry years. In a dry year (e.g., 2012),

warming likely exacerbated soil water deficits (Ciais

et al., 2005; Morgan et al., 2011), which led to lower Reco

in 2012 (Fig. 3). However, in a wet year, warming

increased microbial activity and thus decomposition

rates (Nie et al., 2013), which helps to explain our pre-

dicted amplification of annual Reco under both warm-

ing and elevated CO2 in 2009 (Fig. 3). Aboveground

biomass production was also higher in 2009 (Morgan

et al., 2011), likely paralleled by increased root respira-

tion and potentially greater priming effects (Carrillo

et al., 2011), which together would enhance overall

higher Reco.

The importance of moisture for annual Reco can also

be inferred by evaluating the effects of the irrigation

treatments. The main goal of applying the shallow irri-

gation treatment was to determine whether the stimula-

tion of Reco under elevated CO2 was the direct result of

elevated CO2 or an indirect effect of an increase in soil

water content (SWC) associated with elevated CO2 due

to, for example, higher plant water-use efficiency under

elevated CO2 (Pendall et al., 2003). Annual Reco did not

differ between elevated CO2 and watered plots, sug-

gesting that elevated CO2 indirectly stimulated Reco via

a positive effect on SWC. However, for all but two

years, annual Reco also did not differ between watered

and ambient CO2 plots, suggesting that such water
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savings is likely only one of several factors that can

influence Reco under elevated CO2; other potential fac-

tors are increases in root biomass (Carrillo et al., 2014),

labile C pools (Carrillo et al., 2011), or priming of soil

organic matter decomposition (Nie et al., 2013).

Importance of current and antecedent soil water and
temperature for understanding variation in Reco and its
long-term response to warming and elevated CO2

Overall, water availability was critical for most aspects

of Reco. For example, averaging across treatments,

annual Reco was positively correlated with total annual

precipitation (Fig. S3); variation in this relationship

points to the importance of the seasonal distribution of

precipitation (Huxman et al., 2004; Cable et al., 2008;

Patrick et al., 2009) and legacy effects of past precipita-

tion (Schwinning et al., 2004). For example, 2008 had

the second-lowest annual precipitation, but the second-

highest annual Reco. Most of the precipitation in 2008

was delivered in two large storms (one in June, one in

September) that occurred after 2–3 months of virtually

no precipitation, and the timing of daily Reco peaked

corresponded to the timing of these two events

(Fig. 4g). This confirms other reports of exceptionally

large enhancements of ecosystem and soil CO2 fluxes

following rain events that break long dry spells in arid

ecosystems (Xu et al., 2004; Sponseller, 2007; Cable

et al., 2008, 2011; Thomas et al., 2008) and also high-

lights the importance of past precipitation patterns for

predicting Reco. Moreover, although 2010 was one of

the driest study years, it had the third-highest annual

Reco, suggesting a legacy effect of the preceding wet

year on Reco as well as plant production (Nippert et al.,

2006; Ogle et al., 2015).

The antecedent effects in our model represent legacy

effects over shorter timescales (e.g., daily to weekly),

and most antecedent covariates affected Reco similarly

across the different global change treatments. For exam-

ple, the directions (positive or negative) of the anteced-

ent soil water effect on Reco were the same across all six

treatments (Table 1). Increases in current or antecedent

SWC (SWCant) have been shown to stimulate Reco

(Davidson et al., 1998), but we also found a negative

interaction between current and antecedent SWC

(Table 1), which is consistent with other studies of soil

or ecosystem respiration in semiarid grasslands (Hux-

man et al., 2004; Xu et al., 2004; Harper et al., 2005;

Chou et al., 2008) and deserts (Xu et al., 2004; Sponsell-

er, 2007; Cable et al., 2008, 2011; Thomas et al., 2008;

Barron-Gafford et al., 2014; Oikawa et al., 2014). This

negative interaction indicates that increased SWC stim-

ulates a greater Reco response if the rain event occurs

during a dry vs. wet period. Under extremely wet con-

ditions (very high SWCant), it is possible that a rain

event could reduce Reco, potentially reflecting oxygen

limitations of respiration (Skopp et al., 1990; Davidson

et al., 2012) or constraining the diffusivity of CO2

(Moldrup et al., 2004). Interestingly, our analysis sug-

gests that SWC and SWCant only affect Reco through

their effects on the base rate (Rbase), whereas other stud-

ies (Cable et al., 2011, 2013; Barron-Gafford et al., 2014)

suggest that soil water conditions also affect the appar-

ent temperature sensitivity of Reco.

Consistent across all six treatments, antecedent soil

temperature (SoilTant) most strongly affected the appar-

ent temperature sensitivity (Eo) of Reco, a trend sugges-

tive of a Type I temperature acclimation response

(Atkin & Tjoelker, 2003) that can be amplified by long-

term warming (Luo et al., 2001; Davidson et al., 2006;

Tucker et al., 2013). For example, under elevated CO2

and warming (CT), this temperature acclimation

response was significantly stronger (SoilTant parameter

was more negative) than under the control treatment

(ct) (Fig. 5b). In opposition to this finding, the 6-year

Reco sum was significantly greater under CT (Fig. 3),

which can be explained by Rbase being significantly

greater under CT compared to ct, indicating that accli-

mation of Eo was more than compensated by enhanced

Rbase in the CT treatment. This enhancement of Reco

under the combined effect of elevated CO2 and warm-

ing agrees with findings from a laboratory incubation

experiment using soil microbes from the same site (Nie

et al., 2013). We speculate that the soil organic matter

priming mechanism (Pendall et al., 2003; Dijkstra et al.,

2013), which would most likely affect Rbase more than

Eo, may be more important than the direct effects of

temperature change for understanding positive cli-

mate-CO2 feedbacks (Cox et al., 2000; Luo, 2007; Luo

et al., 2008).

Importance of aboveground factors for understanding
variation in Reco and its long-term response to warming
and elevated CO2

Our results suggest that vegetation greenness was an

important predictor of Reco by affecting the base rate

(Rbase), especially when interacting with antecedent

vapor pressure deficit (VPDant9Gness) and, to a lesser

extent, when interacting with antecedent photosynthet-

ically active radiation (PARant9Gness). These interac-

tions were consistently negative with VPD and positive

with PAR across all treatments, indicating that high

VPD and/or low PAR leads to a reduction in predicted

Reco relative to the amount of active vegetation present.

This likely reflects the effects of these two drivers on

photosynthesis. The coupling of Reco and PAR can have

important implications for soil respiration (Craine et al.,
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1999). In addition, high VPD is expected to result in

greater stomatal closure (Oren et al., 1999; Damour

et al., 2010), reducing GPP and thus root respiration

(Yiqi & Zhou, 2010). In forests, maximum leaf area

index – like vegetation greenness, a proxy for vegeta-

tion productivity – has been found to be a robust pre-

dictor to soil respiration across 17 different forest and

shrubland sites in Europe and North America (Reich-

stein et al., 2003). Under elevated CO2, the interaction

between VPD and vegetation greenness is more nega-

tive, suggesting an increased sensitivity of stomatal

conductance to VPD, which may increase plant water-

use efficiency and reduce drawdown of soil water.

Apparent temperature sensitivity (Eo) is an emergent

ecosystem property that results from the covariation of

many factors with soil temperature, such as soil mois-

ture, substrate availability, and biological activity

(Davidson & Janssens, 2006; Sierra, 2012). In this study,

Eo was affected by the relative amount of slowly vary-

ing (~weekly) plant biomass or phenology, but not by

fast timescale drivers (VPD and PAR). In particular, Eo

was expected to increase with increasing vegetation

greenness (plant biomass) in nonirrigated plots

(Table 1), which was particularly pronounced under

the combination of elevated CO2 and warming. This

potentially reflects the influence of increased substrates

or different substrate types on Eo (Davidson et al., 2006;

Hartley & Ineson, 2008), assuming that greenness is a

proxy for cumulative substrates and root activity. In

contrast to Eo, the main effect of greenness on Rbase was

only significant under irrigation (Table 1), and the sta-

tistically significant interaction of greenness and VPD

and/or PAR suggests that Rbase is more strongly cou-

pled to dynamic photosynthesis than plant standing

crop. In general, our analysis indicates that above-

ground plant activity, whether it be via photosynthesis

(for Rbase) or living biomass (for Eo), is critical for pre-

dicting Reco.

Conclusions

We presented a novel analysis of six years of Reco data

from a long-term multifactor global change experi-

ment. In summary, our work suggests that Reco predic-

tions can be improved by including the combined

effects of antecedent soil moisture, antecedent soil tem-

perature, and aboveground plant activity in future

modeling efforts. In fact, the current version of CEN-

TURY, which operates at the daily timescale, illustrates

a step toward this goal in that it now includes the

effects of moisture conditions prior to rain events and

temperature-dependent temperature sensitivity when

computing respiration (Del Grosso et al., 2005; Cham-

berlain et al., 2011). Our results indicate that excluding

the effects of antecedent environmental conditions

could result in biased (�3.6–17.8%) forecasts of six-year

Reco under different global change scenarios. At the

landscape to global scale, this suggests that the stimu-

lation of grassland Reco under elevated CO2 may not

be as large as currently predicted (Gilmanov et al.,

2010). We recommend that along with past environ-

mental conditions, ecosystem models include above-

ground–belowground linkages, both of which appear

critical to predicting Reco under current and future cli-

mate and CO2 conditions.
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