244 research outputs found

    Porous N- and S-doped carbon-carbon composite electrodes by soft-templating for redox flow batteries

    Get PDF
    Highly porous carbon–carbon composite electrodes for the implementation in redox flow battery systems have been synthesized by a novel soft-templating approach. A PAN-based carbon felt was embedded into a solution containing a phenolic resin, a nitrogen source (pyrrole-2-carboxaldehyde) and a sulfur source (2-thiophenecarboxaldehyde), as well as a triblock copolymer (Pluronic® F-127) acting as the structure-directing agent. By this strategy, highly porous carbon phase co-doped with nitrogen and sulfur was obtained inside the macroporous carbon felt. For the investigation of electrode structure and porosity X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and nitrogen sorption (BET) were used. The electrochemical performance of the carbon felts was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The N- and S-doped carbon electrodes show promising activity for the positive side reaction and could be seen as a significant advance in the design of carbon felt electrodes for use in redox flow batteries

    Acclimatory responses of the Daphnia pulex proteome to environmental changes. II. Chronic exposure to different temperatures (10 and 20°C) mainly affects protein metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temperature affects essentially every aspect of the biology of poikilothermic animals including the energy and mass budgets, activity, growth, and reproduction. While thermal effects in ecologically important groups such as daphnids have been intensively studied at the ecosystem level and at least partly at the organismic level, much less is known about the molecular mechanisms underlying the acclimation to different temperatures. By using 2D gel electrophoresis and mass spectrometry, the present study identified the major elements of the temperature-induced subset of the proteome from differently acclimated <it>Daphnia pulex</it>.</p> <p>Results</p> <p>Specific sets of proteins were found to be differentially expressed in 10°C or 20°C acclimated <it>D. pulex</it>. Most cold-repressed proteins comprised secretory enzymes which are involved in protein digestion (trypsins, chymotrypsins, astacin, carboxypeptidases). The cold-induced sets of proteins included several vitellogenin and actin isoforms (cytoplasmic and muscle-specific), and an AAA+ ATPase. Carbohydrate-modifying enzymes were constitutively expressed or down-regulated in the cold.</p> <p>Conclusion</p> <p>Specific sets of cold-repressed and cold-induced proteins in <it>D. pulex </it>can be related to changes in the cellular demand for amino acids or to the compensatory control of physiological processes. The increase of proteolytic enzyme concentration and the decrease of vitellogenin, actin and total protein concentration between 10°C and 20°C acclimated animals reflect the increased amino-acids demand and the reduced protein reserves in the animal's body. Conversely, the increase of actin concentration in cold-acclimated animals may contribute to a compensatory mechanism which ensures the relative constancy of muscular performance. The sheer number of peptidase genes (serine-peptidase-like: > 200, astacin-like: 36, carboxypeptidase-like: 30) in the <it>D. pulex </it>genome suggests large-scaled gene family expansions that might reflect specific adaptations to the lifestyle of a planktonic filter feeder in a highly variable aquatic environment.</p

    Differential Electrochemical Mass Spectrometry of Carbon Felt Electrodes for Vanadium Redox Flow Batteries

    Get PDF
    We successfully conducted electrochemical and online mass spectrometric measurements on commercial carbon felt electrodes with a differential electrochemical spectrometry setup. Its capability is demonstrated by simultaneous mass spectrometric and electrochemical measurements. Half-cell tests, such as cyclic voltammetry, and coulometry of the redox couples can be performed under stopped flow of the electrolyte. We use different potential windows, and two types of electrolytes while monitoring potential dependent H2, O2 and CO2 formation. At oxidizing potentials, we did not observe oxygen evolution, only carbon corrosion. An increase in CO2 and H2 formation at high and low potentials in the presence of vanadium is observed

    Deciphering the regulatory landscapte of fetal and adult γδ T-cell development at single-cell resolution

    Get PDF
    γδ T cells with distinct properties develop in the embryonic and adult thymus and have been identified as critical players in a broad range of infections, antitumor surveillance, autoimmune diseases, and tissue homeostasis. Despite their potential value for immunotherapy, differentiation of γδ T cells in the thymus is incompletely understood. Here, we establish a high‐resolution map of γδ T‐cell differentiation from the fetal and adult thymus using single‐cell RNA sequencing. We reveal novel sub‐types of immature and mature γδ T cells and identify an unpolarized thymic population which is expanded in the blood and lymph nodes. Our detailed comparative analysis reveals remarkable similarities between the gene networks active during fetal and adult γδ T‐cell differentiation. By performing a combined single‐cell analysis of Sox13, Maf, and Rorc knockout mice, we demonstrate sequential activation of these factors during IL ‐17‐producing γδ T‐cell (γδT17) differentiation. These findings substantially expand our understanding of γδ T‐cell ontogeny in fetal and adult life. Our experimental and computational strategy provides a blueprint for comparing immune cell differentiation across developmental stages

    Respiratory plasticity in response to changes in oxygen supply and demand

    Get PDF
    Aerobic organisms maintain O2 homeostasis by responding to changes in O2 supply and demand in both short and long time domains. In this review, we introduce several specific examples of respiratory plasticity induced by chronic changes in O2 supply (environmental hypoxia or hyperoxia) and demand (exercise-induced and temperature-induced changes in aerobic metabolism). These studies reveal that plasticity occurs throughout the respiratory system, including modifications to the gas exchanger, respiratory pigments, respiratory muscles, and the neural control systems responsible for ventilating the gas exchanger. While some of these responses appear appropriate (e.g., increases in lung surface area, blood O2 capacity, and pulmonary ventilation in hypoxia), other responses are potentially harmful (e.g., increased muscle fatigability). Thus, it may be difficult to predict whole-animal performance based on the plasticity of a single system. Moreover, plastic responses may differ quantitatively and qualitatively at different developmental stages. Much of the current research in this field is focused on identifying the cellular and molecular mechanisms underlying respiratory plasticity. These studies suggest that a few key molecules, such as hypoxia inducible factor (HIF) and erythropoietin, may be involved in the expression of diverse forms of plasticity within and across species. Studying the various ways in which animals respond to respiratory challenges will enable a better understanding of the integrative response to chronic changes in O2 supply and deman

    Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions

    Get PDF
    Exploiting electrocatalysts with high activity for glucose oxidation is of central importance for practical applications such as glucose fuel cell. Pt-decorated nanoporous gold (NPG-Pt), created by depositing a thin layer of Pt on NPG surface, was proposed as an active electrode for glucose electrooxidation in neutral and alkaline solutions. The structure and surface properties of NPG-Pt were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and cyclic voltammetry (CV). The electrocatalytic activity toward glucose oxidation in neutral and alkaline solutions was evaluated, which was found to depend strongly on the surface structure of NPG-Pt. A direct glucose fuel cell (DGFC) was performed based on the novel membrane electrode materials. With a low precious metal load of less than 0.3 mg cm-2 Au and 60 μg cm-2 Pt in anode and commercial Pt/C in cathode, the performance of DGFC in alkaline is much better than that in neutral condition

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    High Electron Mobility in Vacuum and Ambient for PDIF-CN2 Single-Crystal Transistors

    Full text link
    We have investigated the electron mobility on field-effect transistors based on PDIF-CN2_{2} single crystals. The family of the small molecules PDI8-CN2_{2} has been chosen for the promising results obtained for vapour-deposited thin film FETs. We used as gate dielectric a layer of PMMA (spinned on top of the SiO2_{2}), to reduce the possibility of electron trapping by hydroxyl groups present at surface of the oxide. For these devices we obtained a room temperature mobility of 6 cm2^{2}/Vs in vacuum and 3 cm2^{2}/Vs in air. Our measurements demonstrate the possibility to obtain n-type OFETs with performances comparable to those of p-type devices.Comment: published online in JAC

    Strong differences in the clonal variation of two Daphnia species from mountain lakes affected by overwintering strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The population structure of cyclical parthenogens such as water fleas is strongly influenced by the frequency of alternations between sexual and asexual (parthenogenetic) reproduction, which may differ among populations and species. We studied genetic variation within six populations of two closely related species of water fleas of the genus <it>Daphnia </it>(Crustacea, Cladocera). <it>D. galeata </it>and <it>D. longispina </it>both occur in lakes in the Tatra Mountains (Central Europe), but their populations show distinct life history strategies in that region. In three studied lakes inhabited by <it>D. galeata</it>, daphnids overwinter under the ice as adult females. In contrast, in lakes inhabited by <it>D. longispina</it>, populations apparently disappear from the water column and overwinter as dormant eggs in lake sediments. We investigated to what extent these different strategies lead to differences in the clonal composition of late summer populations.</p> <p>Results</p> <p>Analysis of genetic variation at nine microsatellite loci revealed that clonal richness (expressed as the proportion of different multilocus genotypes, MLGs, in the whole analysed sample) consistently differed between the two studied species. In the three <it>D. longispina </it>populations, very high clonal richness was found (MLG/N ranging from 0.97 to 1.00), whereas in <it>D. galeata </it>it was much lower (0.05 to 0.50). The dominant MLGs in all <it>D. galeata </it>populations were heterozygous at five or more loci, suggesting that such individuals all represented the same clonal lineages rather than insufficiently resolved groups of different clones.</p> <p>Conclusions</p> <p>The low clonal diversities and significant deviations from Hardy-Weinberg equilibrium in <it>D. galeata </it>populations were likely a consequence of strong clonal erosion over extended periods of time (several years or even decades) and the limited influence of sexual reproduction. Our data reveal that populations of closely related <it>Daphnia </it>species living in relatively similar habitats (permanent, oligotrophic mountain lakes) within the same region may show strikingly different genetic structures, which most likely depend on their reproductive strategy during unfavourable periods. We assume that similar impacts of life history on population structures are also relevant for other cyclical parthenogen groups. In extreme cases, prolonged clonal erosion may result in the dominance of a single clone within a population, which might limit its microevolutionary potential if selection pressures suddenly change.</p
    corecore