6 research outputs found

    Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model

    Get PDF
    In der vorliegenden Dissertation werden mit einem chiralen SU(3)-Modell die thermodynamischen Eigenschaften von stark wechselwirkender hadronischer Materie und die mikroskopischen Medium-Eigenschaften von Hadronen bei hohen Temperaturen und hohen Baryonen-Dichten untersucht. Das verwendete chirale Modell ist ein erweitertes sigma-omega-Modell in Mittlerer-Feld-Näherung (Mean-Field) mit baryonischen und mesonischen effektiven Freiheitsgraden; es basiert auf spontan gebrochener chiraler Symmetrie und Skaleninvarianz. Das Phasenübergangsverhalten des chiralen Modells wird systematisch untersucht und dabei gezeigt, dass es signifikant von den Kopplungen zusätzlicher schwererer hadronischer Freiheitsgrade ('Resonanzen') abhängt. Durch entsprechende Ankopplung des niedrigsten baryonischen Dekupletts kann ein Phasendiagramm in qualitativer Übereinstimmung mit aktuellen Vorhersagen der Gitter-QCD erreicht werden. Alternativ wird die Ankopplung einer schweren baryonischen Test-Resonanz untersucht, welche effektiv für das Spektrum der schweren hadronischen Zustände steht. Hier ergibt sich für einen bestimmten Bereich der Kopplungen sogar eine quantitative Übereinstimmung zu den Gitter-QCD-Vorhersagen bei gleichzeitig guter Beschreibung der Grundzustandseigenschaften von Kernmaterie. Für diese Zustandsgleichung werden Vorhersagen (innerhalb der Modellannahmen) zu geplanten Experimenten gemacht -- konkret wird gezeigt, dass der Phasenübergangsbereich für das CBM Experiment des geplanten Beschleunigerzentrums FAIR an der GSI Darmstadt experimentell zugänglich ist. Weiter wird das chirale Modell auf die Beschreibung von experimentellen Teilchenzahlverhältnissen (Yield-Ratios) aus Schwerionen-Kollisionen von AGS, SPS und RHIC angewendet. Studiert werden Parametersätze mit stark unterschiedlichen Phasendiagrammen aufgrund unterschiedlicher Ankopplung des baryonischen Dekupletts sowie ein ideales Hadronengas. Bei den niedrigen und mittleren Kollisionsenergien zeigt sich eine verbesserte Beschreibung durch die chiralen Parametersätze im Vergleich zum idealen Hadronengas, besonders deutlich für Parametersätze mit Phasendiagramm ähnlich der Vorhersage aus der Gitter-QCD. Die Wechselwirkung im chiralen Modell führt zu Medium-Modifikationen der chemischen Potentiale und der Hadronenmassen. Die resultierenden Ausfrierparameter mu und T sind deshalb gegenüber dem nichtwechselwirkenden Fall signifikant verändert. An den Ausfrierpunkten zeigen sich deutliche Abweichungen der effektiven Massen von den Vakuummassen (5 bis 15 %) und des effektiven baryo-chemischen Potentials vom ursprünglichen Wert (bis zu 20 %). Ferner werden universelle Kriterien für das Ausfrieren diskutiert und isentrope Expansion zu den Ausfrierpunkten untersucht, wo sich eine starke Abhängigkeit der Trajektorien von der Zustandsgleichung ergibt. Schließlich wird der Einfluss des Dilaton-Felds (Gluonkondensat) auf das Phasenübergangsverhalten bei mu=0 studiert, indem das Gluonkondensat an die Dekuplett-Baryonen gekoppelt wird. Es zeigt sich, dass dadurch eine Restauration der Skaleninvarianz im Modell möglich wird, die gleichzeitig auch eine vollständige Restauration der chiralen Symmetrie bewirkt. Die Restauration der Skaleninvarianz erfolgt erst bei Temperaturen, die oberhalb der chiralen Restauration (im nichtseltsamen Sektor) liegen. Diese Modellerweiterung ermöglicht es, zukünftig das Phasenübergangsverhalten -- Restauration von chiraler Symmetrie und Skaleninvarianz -- auch bei nichtverschwindenden Baryonendichten zu untersuchen. Die Resultate dieser Arbeit zeigen die Wichtigkeit der schweren hadronischen Zustände, der Resonanzen, für das QCD-Phasendiagramm. Für die Zukunft ist eine Ankopplung des gesamten hadronischen Massenspektrums an das Modell erstrebenswert, wie sich sowohl aus der Untersuchung der Modellerweiterung um eine Test-Resonanz als auch aus der Anwendung auf experimentelle Teilchenzahlverhältnisse ergibt.In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized sigma-omega model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom ('resonances'). A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the resulting freeze-out parameters mu and T are significantly changed in comparison with the non-interacting case. At freeze-out the effective masses differ by 5 to 15 % from the corresponding vacuum masses and the effective baryo-chemical potential is up to 15 % lower than the original value. Furthermore, universal criteria for the freeze-out are discussed and isentropic expansion to the freeze-out points is investigated, the latter showing a strong dependence of the trajectories on the equation of state. Finally the influence of the dilaton field (gluon condensate) on the phase transition behavior at mu=0 is studied by coupling the gluon condensate to the baryon decuplet. Thus restauration of scale invariance can occur in the model, leading to a complete restauration of chiral symmetry at the same time. The scale symmetry restauration occurs only at higher temperatures than the original chiral restauration (in the non-strange sector). This model extension allows for future studies at non-vanishing baryonic densities also. The results of this thesis confirm the importance of the heavy hadronic states (resonances) for the QCD phase diagram. Both the model extension by the test resonance and the application on experimental yield ratios indicate that it is desirable to include the complete hadronic mass spectrum into the model in forthcoming works

    Particle ratios from AGS to RHIC in an interacting hadronic model

    Get PDF
    Abstract: The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) Ã É approach. The commonly adopted non-interacting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. In contrast, the chiral SU(3) model predicts temperature and density dependent effective hadron masses and effective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three different parametrizations of the model, which show different types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, freezing of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters differ considerably from those obtained in simple non-interacting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The inmedium masses turn out to differ up to 150 MeV from their vacuum values

    Equation of state for the two component Van der Waals gas with relativistic excluded volumes

    Get PDF
    A canonical partition function for the two-component excluded volume model is derived, leading to two di erent van der Waals approximations. The one is known as the Lorentz-Berthelot mixture and the other has been proposed recently. Both models are analysed in the canonical and grand canonical ensemble. In comparison with the one-component van der Waals excluded volume model the suppression of particle densities is reduced in these two-component formulations, but in two essentially di erent ways. Presently used multi-component models have no such reduction. They are shown to be not correct when used for components with di erent hard-core radii. For high temperatures the excluded volume interaction is refined by accounting for the Lorentz contraction of the spherical excluded volumes, which leads to a distinct enhancement of lighter particles. The resulting e ects on pion yield ratios are studied for AGS and SPS data

    Multi-strange baryon production in Au+Au collisions near threshold

    Full text link
    The centrality dependence of Xi^- and Lambda production in Au+Au interactions at E_lab=6 AGeV is studied within a microscopic transport approach. In line with recent data, a slight enhancement of the Xi^-/(Lambda+Sigma^0) ratio toward central collisions is found. It is demonstrated that the observed production of multiple strange baryons can be traced back to multi-step meson-baryon interactions in the late stages of the collisions. Therefore, the present analysis supports an interpretation of the observed Xi abundance in terms of hadronic re-scattering.Comment: 5 pages, 6 figure
    corecore