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A canonical partition function for the two-component excluded volume model is derived, leading
to two different van der Waals approximations. The one is known as the Lorentz-Berthelot mixture
and the other has been proposed recently. Both models are analysed in the canonical and grand
canonical ensemble. In comparison with the one-component van der Waals excluded volume model
the suppression of particle densities is reduced in these two-component formulations, but in two
essentially different ways. Presently used multi-component models have no such reduction. They
are shown to be not correct when used for components with different hard-core radii.
For high temperatures the excluded volume interaction is refined by accounting for the Lorentz

contraction of the spherical excluded volumes, which leads to a distinct enhancement of lighter
particles. The resulting effects on pion yield ratios are studied for AGS and SPS data.

KEYWORDS : Two-component and Multi-component Hadron Gas, Equation of State,
Van der Waals Excluded Volume Model, Relativistic Excluded Volumes .

I. INTRODUCTION

Thermal models are commonly used to interprete ex-
perimental data from hadron collisions, see for instance
[1–5] . In the van der Waals excluded volume (VdW)
model the short range repulsion between particles is rep-
resented by hard-core potentials, i. e. the finite size of the
particles is taken into account. As a consequence par-
ticle yields are essentially reduced in comparison with
ideal gas results, whereas yield ratios remain almost un-
changed, if the same hard-core radius is used for all par-
ticle species.

As particle species with smaller hard-core radii are
closer to the ideal case, their particle densities are sup-
pressed less. Consequently, their yield ratios to particle
species with larger hard-core radii are enhanced. This
fact has been used in recent efforts [6] to explain the
experimentally observed pion abundance for AGS and
SPS data [7] by introducing a smaller hard-core radius
for pions Rπ than for all other hadrons Ro . However,
the resulting values are quite large, Ro = 0.8 fm and
Rπ = 0.62 fm . In Ref. [8] a reasonable fit of SPS data
has been obtained only for a distinctly smaller pair of
hard-core radii.

The excluded volume models used in [6,8] , however,
are not correct in the case of different hard-core radii.
As will be shown in Sect. II , these models correspond to
a system where the components are separated from each
other by a mobile wall and hence cannot mix.

∗e-mail: gzeeb@th.physik.uni-frankfurt.de

A more realistic approach requires a two-component
partition function including a term for the repulsion
between particles of different hard-core radii. In the
case of two components, however, the VdW approxima-
tion is not uniquely defined. The simplest possibility
yields the Lorentz-Berthelot mixture, which was origi-
nally postulated by van der Waals for binary mixtures,
see Refs. [9–12] . Another VdW approximation was re-
cently proposed in Ref. [13] . These two formulations
contain a suppression of particle densities similar to the
one-component van der Waals gas, which is reduced to

different extend for each formulation. In the present work
we will study and apply both of these formulations.

There is yet another cause for a reduced excluded vol-
ume suppression. Particles are considered to be rigid
spheres in the VdW model. At high energies as achieved
in nuclear collisions, however, relativistic effects cannot
be neglected [14] . Within the logic of the VdW model
it is necessary to take into account the Lorentz contrac-
tion of the spheres. We will use an approach developed
in Ref. [15] providing approximative formulae for rela-
tivistic excluded volumes: naturally, they decrease with
rising temperature, and the effect is stronger for lighter
particles. At high temperatures, consequently, it is not
possible to use a one-component VdW description (i. e. a
common excluded volume for all particle species) for a
system of species with various masses. Since different
masses cause different reductions of the excluded vol-
umes at a given temperature, a multi-component VdW
description is required.

To illustrate the influence of different excluded volumes
we will restrict ourselves in this work to the simplest
’multi-component’ case, the two-component case. The
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crucial extension from the one- to the two-component
case is to include the repulsion between particles of two
different hard-core radii. As it will be illustrated, a gen-
eralisation to the multi-component case is straightfor-
ward and will yield no essential differences [16] .

In the next section a derivation of the one-component
canonical partition function with (constant) excluded
volumes is presented. The generalisation to the two-
component case is made and two possible VdW approxi-
mations are analysed: the Lorentz-Berthelot mixture [12]
and the recently proposed approximation of Ref. [13] .
The corresponding formulae for the grand canonical en-
semble are derived and discussed in Sect. III . Relativis-
tic excluded volumes are introduced in Sect. IV and the
corresponding equations of state are presented for both
models. In Sect. V a fit of particle yield ratios [6] is
re-evaluated for both approximations, with constant and
with relativistic excluded volumes. The conclusions are
given in Sect. VI .

The appendixes A and C give a detailed analysis and
comparison of the two approximations in the canonical
and grand canonical ensemble, respectively. In App. B
a general proof of the thermodynamical stability of the
non-linear approximation is given.

II. CANONICAL TREATMENT

First we will derive the canonical partition function
(CPF) for the one-component VdW gas by estimating
the excluded volumes of particle clusters. Then this pro-
cedure will be generalised to the two-component case.

For simplicity Boltzmann statistics are used through-
out this work. The deviations from quantum statistics
are negligible as long as the density over temperature
ratio is small. This is the case for the hadron gas at tem-
peratures and densities typical for heavy ion collisions,
see e. g. Ref. [6] .

Note that in this work we will use the term VdW for
the van der Waals excluded volume model, not for the
general van der Waals model which includes attraction.

A. The Van der Waals Excluded Volume Model

Let us consider N identical particles with temperature
T kept in a sufficiently large volume V , so that finite
volume effects can be neglected. The partition function
of this system (h̄ = c = kB = 1) reads

Z(T, V, N) =
φN

N !

∫

V N

d3x1 · · · d3xN exp
[

−UN

T

]

. (1)

Here, φ ≡ φ(T ; m, g) denotes the momentum integral of
the one particle partition

φ(T ; m, g) =
g

2π2

∞
∫

0

dk k2 exp
[

−E(k)
T

]

, (2)

where E(k) ≡
√

k2 + m2 is the relativistic energy and
g = (2S + 1)(2I + 1) counts the spin and isospin de-
generacy. For a hard-core potential UN of N spherical
particles with radii R the potential term in Eq. (1) reads

exp
[

−UN

T

]

=
∏

i<j≤N

θ(|~xij | − 2R) , (3)

where ~xij denotes the relative position vector connecting
the centers of the i-th and j-th particle. Hence one can
write

∫

V N

d3x1 · · · d3xN exp
[

−UN

T

]

=

∫

V N

d3x1 · · · d3xN

∏

1≤i<j≤N

θ(|~xij | − 2R)

=

∫

V

d3x1

∫

V

d3x2 θ(|~x12| − 2R) ×

× · · ·
∫

V

d3xN

∏

1≤i≤N−1

θ(|~xi,N | − 2R)

≡
∫

V

d3x1

{~x1}
∫

d3x2 · · ·
{~x1...~xN−1}

∫

d3xN . (4)

Here,
{~x1...~xj}

∫

d3xj+1 denotes the available volume for
~xj+1, which is the center of the particle with num-
ber j + 1 , if the j other particles are configurated as
{~x1 . . . ~xj} . We will show now that this volume is es-

timated by
{~x1...~xj}

∫

d3xj+1 ≥ (V − 2b j) , where 2b ≡
4π
3 (2R)3 is the excluded volume of an isolated particle

seen by a second one. Then, 2b j estimates the total vol-
ume which is excluded by all particle clusters occuring in
the configuration {~x1 . . . ~xj} .

It is sufficient to prove that the excluded volume of
a cluster of k particles is less than the excluded volume
of k isolated particles. A group of k particles forms a
k-cluster, if for any of these particles there is a neigh-
bouring particle of this group at a distance less than 4R .
The exact excluded volume of a k-cluster, v(k) , obvi-
ously depends on the configuration of the k particles. If
one considers two isolated particles, i. e. two 1-clusters,
and reduces their distance below 4R , their excluded vol-
umes will overlap. They form now a 2-cluster with the
excluded volume v(2) = 4b− 1vov , where vov denotes the
overlap volume.

Evidently, one can construct any k-cluster by attaching
additional particles and calculate its excluded volume by
subtracting each occuring overlap volume from 2b k . It
follows that v(k) < 2b k is valid for any k-cluster, and
this inequality leads to the above estimate. Obviously,
its accuracy improves with the diluteness of the gas.

Using these considerations one can approximate the
r. h. s. of Eq. (4) : starting with j + 1 = N one gradually

replaces all integrals
{~x1...~xj}

∫

d3xj+1 by (V − 2b j) . One
has to proceed from the right to the left, because only the
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respective rightmost of these integrals can be estimated
in the described way. Hence one finds

Z(T, V, N) ≥ φN

N !

N−1
∏

j=0

(V − 2b j) . (5)

In this treatment the VdW approximation consists of
two assumptions concerning Eq. (5) . Firstly, the product
can be approximated by

N−1
∏

j=0

(

1 − 2b
V j

) ∼= exp
[

−∑N−1
j=0

2b
V j

]

(6)

= exp
[

− b
V (N − 1)N

] ∼=
(

1 − b
V N

)N
,

where exp [−x] ∼= (1 − x) is used for dilute systems, i. e.
for low densities 2bN/V ≪ 1 . The second assumption is
to take the equality instead of the inequality in Eq. (5) .
Then the CPF takes the VdW form,

ZVdW(T, V, N) =
φN

N !
(V − bN)

N
. (7)

As usual, the VdW CPF is obtained as an approximation
for dilute systems, but when used for high densities it
should be considered as an extrapolation.

Finally, one obtains the well-known VdW pressure for-
mula from the thermodynamical identity p(T, V, N) ≡
T ∂ ln[Z(T, V, N)]/∂V ,

pVdW(T, V, N) =
T N

V − bN
, (8)

using the logarithm of the Stirling formula.
Now let us briefly investigate a system of volume V

containing two components with different hard-core radii
R1 and R2 which are separated by a wall and occupy the
volume fractions xV and (1−x)V , respectively. Accord-
ing to Eq. (8) their pressures read

pVdW(T, xV, N1) =
T N1

xV − N1b11
, (9)

pVdW(T, (1 − x)V, N2) =
T N2

(1 − x)V − N2b22
, (10)

where the particle numbers N1, N2 and the excluded vol-
umes b11 = 16π

3 R 3
1 , b22 = 16π

3 R 3
2 correspond to the

components 1 and 2 , respectively.
If the separating wall is mobile, the pressures (9) and

(10) must be equal. In this case the fraction x can be
eliminated and one obtains the common pressure of the
whole system

pVdW(T, xV, N1) = pVdW(T, (1 − x)V, N2)

= p sp(T, V, N1, N2) ≡
T (N1 + N2)

V − N1b11 − N2b22
. (11)

Since the components are separated in this model system
it will be referred to as the separated model [16] .

The pressure formula (11) corresponds to the Boltz-
mann approximation of the commonly used two-
component VdW models of Refs. [6,8] as will be shown
in Sect. V . It is evident that p sp (11) does not describe
the general two-component situation without a separat-
ing wall. Therefore, it is necessary to find a more realistic
model, i. e. an approximation from a two-component par-
tition function. This will be done in the following.

B. Generalisation to the Two-component Case

Recall the simple estimate (4–7) , which gives a phys-
ically transparent derivation of the one-component CPF
in the VdW approximation. Let us use it now for a
two-component gas of spherical particles with radii R1

and R2 , respectively. It is important to mention that
each component may consist of several particle species
as long as these species have one common hard-core ra-
dius, i. e. the number of necessary VdW components is
determined by the number of different excluded volume
terms bqq . In the case of two radii the potential term (3)
becomes

exp
[

−UN1+N2

T

]

=
∏

i<j≤N1

θ(|~xij | − 2R1) × (12)

× ∏

k<ℓ≤N2

θ(|~xkℓ| − 2R2) ×

× ∏

m≤N1

n≤N2

θ(|~xmn| − (R1 + R2)) .

The integration is carried out in the way described above;
e. g. firstly over the coordinates of the particles of the sec-
ond component, then over those of the first component.
For the estimation of the excluded volume of a k-cluster
now two different particle sizes have to be considered.
One obtains

Z(T, V, N1, N2)

≥ φN1

1

N1!

φN2

2

N2!

{

N1−1
∏

i=0

(V − 2b11 i)

}

×

×
{

N2−1
∏

j=0

(V − 2b12 N1 − 2b22 j)

}

∼= φN1

1

N1!

φN2

2

N2!
V N1+N2 ×

× exp
[

−N 2
1 b11+2N1N2b12+N 2

2 b22
V

]

, (13)

where it is φq ≡ φ(T ; mq, gq) , and 2bpq ≡ 4π
3 (Rp + Rq)

3

denotes the excluded volume of a particle of the compo-
nent p seen by a particle of the component q (p, q =
1, 2 hereafter) . Approximating the above exponent by
exp[−x] ∼= (1 − x) yields the simplest possibility of a
VdW approximation for the two-component CPF ,

Z nl
VdW(T, V, N1, N2)

3



≡ φN1

1

N1!

φN2

2

N2!
× (14)

×
(

V − N 2
1 b11 + 2N1N2b12 + N 2

2 b22

N1 + N2

)N1+N2

=
φN1

1

N1!

φN2

2

N2!
× (15)

×
(

V − N1b11 − N2b22 +
N1 N2

N1 + N2
D

)N1+N2

,

where the non-negative coefficient D is given by

D ≡ b11 + b22 − 2 b12 . (16)

This approximation will be called the non-linear approx-
imation as the volume correction in (15) contains non-
linear terms in N1, N2 . The corresponding pressure fol-
lows from the thermodynamical identity,

p nl(T, V, N1, N2) = p nl
1 + p nl

2 (17)

≡ T (N1 + N2)

V − N1b11 − N2b22 + N1 N2

N1+N2
D

.

This canonical formula corresponds to the Lorentz-
Berthelot mixture (without attraction terms) known
from the theory of fluids [12] . It was postulated by van
der Waals [9] and studied as well by Lorentz [10] and
Berthelot [11] .

The crucial step from the one- to the two-component
gas is to include bpq terms (p 6= q) additionally to the
bqq ≡ b|R=Rq

terms. For the multi-component gas no
further essential extension is necessary. Consequently,
the generalisation of the above procedure to the multi-
component case, i. e. an arbitrary number of different
hard-core radii, is straightforward [16] .

In Ref. [13] a more involved approximation has been
suggested for the two-component VdW gas. This follows
from splitting the exponent in the CPF (13) by intro-

ducing two generalised excluded volume terms b̃12 and
b̃21 (instead of a single and symmetric term 2 b12) for the
mixed case,

Z(T, V, N1, N2)

∼= φN1

1

N1!

φN2

2

N2!
V N1+N2 × (18)

× exp

[

−N 2
1 b11+N1N2(b̃12+b̃21)+N 2

2 b22

V

]

,

which leads to an alternative two-component VdW CPF ,

Z lin
VdW(T, V, N1, N2)

≡ φN1

1

N1!

(

V − N1b11 − N2b̃21

)N1

× (19)

× φN2

2

N2!

(

V − N2b22 − N1b̃12

)N2

.

Since the particle numbers N1, N2 appear solely linearly
in the volume corrections, these formulae will be referred

to as the linear approximation. In this approximation
one obtains [13] for the pressure

p lin(T, V, N1, N2) = p lin
1 + p lin

2 (20)

≡ T N1

V − N1b11 − N2b̃21

+
T N2

V − N2b22 − N1b̃12

.

The choice of the generalised excluded volume terms
b̃pq is not unique in the sense that all choices which satisfy

the basic constraint b̃12 + b̃21 = 2b12 are consistent with
the second order virial expansion [13] . Therefore, ad-
ditional conditions are necessary to fix these generalised
excluded volumes. In Ref. [13] they were chosen as

b̃12 ≡ b11
2 b12

b11 + b22
, b̃21 ≡ b22

2 b12

b11 + b22
. (21)

For this choice, the linear approximation reproduces a
traditional VdW gas behaviour, i. e. one-component-like,
in the two limits R2 = R1 and R2 = 0 as readily checked.
The factor 2b12/(b11 + b22) = 1 − D/(b11 + b22) is al-
ways smaller than unity for R1 6= R2 , consequently, the
b̃pq terms are smaller than the corresponding terms bpp .

Note that there are many possible choices for b̃12 and
b̃21 , e. g. additionally dependent on the particle numbers
N1 and N2 , whereas the non-linear approximation (14)
contains no such additional parameters.

The formulae of the linear approximation are gener-
ally valid for any choice of b̃12 and b̃21 satisfying the con-
straint b̃12 + b̃21 = 2b12 . In the following, however, we
will restrict our study to the special choice given in the
Eqs. (21) . The canonical (and grand canonical) formulae
for the multi-component case are given in Ref. [13] .

C. Comparison of both

Two-component VdW Approximations

As the VdW approximation is a low density approxi-
mation it is evident that the linear and non-linear formu-
lae are equivalent for such densities. Deviations, however,
occur at high densities, where any VdW approximation
generally becomes inadequate.

The differences between both approximations result
from the fact that the linear pressure (20) has two poles,
v lin
1 = V and v lin

2 = V , whereas the non-linear pressure
(17) has solely one pole, v nl = V . For constant vol-
ume V these poles define limiting densities, e. g. n̂1 =
max(N1/V ) as functions of n2 = N2/V ,

v lin
q (N1, N2) = V ; n̂1(n2) ≡ n̂ lin

1,q(n2) (22)

or v nl(N1, N2) = V ; n̂1(n2) ≡ n̂ nl
1 (n2) , (23)

which represent the domains of the two pressure formulae
in the n2–n1-plane. The explicit fomulae are discussed
in App. A .

In Fig. 1 (a) an example of these limiting densities is
shown for R2/R1 = 0.4 . It is clearly seen that the non-
linear domain (below the solid line) is larger than the
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linear domain (below both dashed lines), which is gen-
erally the case for R2 6= R1 . Especially for R2 ≪ R1

the non-linear domain is distinctly larger for high den-
sities of the large component, n1b11 > n2b22 , whereas
both domains are similar for high densities of the small
component, n2b22 > n1b11 .

The linear approximation is constructed in traditional
VdW spirit; the densities n lin

q achieved in this approx-
imation are below the maximum density of the corre-
sponding one-component VdW gas max(n oc

q ) = 1/bqq ,
which is defined by the pole of p oc

q ≡ pVdW(T, V, Nq; bqq)
from Eq. (8) .

In the non-linear approximation, however, the possi-
ble densities of the larger particles n nl

1 can exceed 1/b11

due to the occurence of negative partial derivatives of
the pressure, ∂p nl/∂N2 < 0 . In this context it is nec-
essary to state that this behaviour does not lead to a
thermodynamical instability of the non-linear approxi-
mation as proven in App. B . The linear approximation
shows no such behaviour, it is always ∂p lin/∂N1 > 0 and
∂p lin/∂N2 > 0 .

The condition ∂p nl/∂N2 = 0 defines the boundary

n̂ nl, bd
1 (n2) of the region of negative partial derivatives

of the non-linear pressure. In Fig. 1 (a) this boundary is
shown by the dotted line for R2/R1 = 0.4 ; the values of
∂p nl/∂N2 are negative above this line.

Densities larger than n nl
1 = 1/b11 can only occur, if R2

is smaller than a critical radius,

R2 < R2, crit(R1) = (
3
√

4 − 1)R1 ≈ R1/1.7 . (24)

Then, the boundary n̂ nl, bd
1 (n2) starts inside the non-

linear domain, see App. A for details.
The reason for this behaviour is the ratio of the

amounts of small and large particles. There are much
more small than large particles in the system for densi-

ties n1, n2 along the boundary n̂ nl, bd
1 (n2) at high den-

sities n1 : here, the fewer large particles are surrounded
by many small particles. Therefore, the excluded volume
interaction of the large particles in the non-linear pres-
sure (17) is governed not by the simple term b11 but by
the mixed term b12 , which is distinctly smaller than b11

for R2 ≪ R1 . The maximum density achieved in the
non-linear approximation max(n̂ nl

1 ) = 4/b11 is obtained
for R2 → 0 and N2 ≫ N1 , i. e. these formulae go far be-

yond the traditional VdW results in the corresponding
situation.

An example of pressure profiles for p lin
1 , p lin

2 and p nl

for n1b11 = 0.9 is shown in Fig. 1 (b) , where it is
R2/R1 = 0.4 as in Fig. 1 (a) . The non-linear pressure
(solid line) firstly decreases as the densities n1, n2 cor-
respond to the region of negative partial derivatives, see
Fig. 1 (a) . The partial pressures of the linear approxima-
tion are shown by dashed lines. The non-linear domain
is seen to be larger since it is one of the linear partial
pressures which diverges first for increasing n2 .

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
n2 b22

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

n 1
b 1

1

(a)

boundary ( p
nl

/ N2 = 0)
non-linear (v = V , p = )
linear (v2 = V , p2 = )
linear (v1 = V , p1 = )

0.0 0.1 0.2 0.3 0.4 0.5 0.6
n2 b22

0

5

10

15

20
p

(b
11

/T
)

(b)

nl p
lin p2

lin p1

FIG. 1. (a) Domains of the linear and non-linear approx-
imation for R2/R1 = 0.4 : limiting densities n̂1 (isobars for
pq(n1, n2) = ∞) and the lower boundary n̂ nl,bd

1
to the region

of negative partial derivatives of the non-linear pressure. The
dashed lines correspond to the two poles of the linear pressure,
and the solid line corresponds to the pole of the non-linear
pressure. For given n2 the possible densities n lin

1 are below
both dashed lines, whereas the possible densities n nl

1 are be-
low the solid line. Negative derivatives ∂p nl/∂N2 < 0 occur
only above the dotted line.
(b) Pressure profiles in dimensionless units for R2/R1 = 0.4 as
in (a) at fixed n1b11 = 0.9 . The dashed lines show the partial
pressures of the linear approximation p lin

1 and p lin

2 , while the
solid line shows the total pressure of the non-linear approxi-
mation p nl with initial decrease due to negative ∂p nl/∂N2 .
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We conclude that the linear and non-linear approxi-
mation show a drastically different behaviour for high
values of the large component’s density n1 . In the lin-
ear approximation (20) the possible density values are
below 1/b11 and 1/b22 , respectively, and the derivatives
∂p lin/∂Nq are always positive. Whereas in the non-
linear approximation (17) higher densities n1 > 1/b11

are possible due to the occurence of negative derivatives
∂p nl/∂N2 < 0 . This may be considered as pathologi-
cal – or used as an advantage to describe special situa-
tions, e. g. densities 1/b11 < n1 < n̂ nl

1 for R2 ≪ R1 (see
App. A).

However, the use of any VdW approximation is in prin-
ciple problematic for densities near 1/bqq . For low den-
sities the non-linear and linear approximation are prac-
tically equivalent, and the non-linear approximation is
preferable since the formulae are essentially simpler.

III. GRAND CANONICAL TREATMENT

Let us now turn to the grand canonical ensemble
(GCE) . The grand canonical partition function is built
using the CPF ,

Z(T, V, µ1, µ2) (25)

=
∞
∑

N1=0

∞
∑

N2=0

exp
[

µ1N1+µ2N2

T

]

Z(T, V, N1, N2) ,

whereas the chemical potentials µ1 and µ2 correspond to
the components 1 and 2 , respectively. For the VdW CPF
(15) or (19) there are limiting particle numbers N̂1(N2) or

N̂2(N1) , where each CPF becomes zero. For this reason
the above sum contains only a finite number of terms.
Then it can be shown that in the thermodynamical limit
(i. e. in the limit V → ∞ for Nq/V = const.) the grand
canonical pressure p(T, µ1, µ2) ≡ T ln[Z(T, V, µ1, µ2)]/V
depends only on the maximum term of the double sum
(25) , where N1 = N1 and N2 = N2 . One obtains

p(T, µ1, µ2) (26)

= lim
V →∞

T

V
ln

[

exp
[

µ1N1+µ2N2

T

]

Z(T, V,N1,N2)

]

,

wheras N1 and N2 are the average particle numbers.

A. The Two VdW Approximations

For the non-linear VdW approximation (15) the last
expression takes the form

p nl(T, µ1, µ2) (27)

= lim
V →∞

T

V
ln

[

A
N1
1

N1!

A
N2
2

N2! ×

×
(

V −N1b11 −N2b22 + N1 N2

N1+N2
D

)N1+N2

]

,

where Aq = A(T, µq; mq, gq) ≡ exp[µq/T ] φq .
The evaluation of both maximum conditions for the

grand canonical pressure

0
!
=

∂

∂Nq

{

ln

[

A
N1
1

N1!

A
N2
2

N2!
× (28)

×
(

V −N1b11 −N2b22 + N1 N2

N1+N2
D

)N1+N2

] }

,

yields a system of two coupled transcendental equations,

ξ nl
1 (T, µ1, µ2)

= A1 exp
[

−(ξ nl
1 + ξ nl

2 ) b11 +
ξ nl
2

2

ξ nl
1

+ξ nl
2

D
]

, (29)

ξ nl
2 (T, µ1, µ2)

= A2 exp
[

−(ξ nl
1 + ξ nl

2 ) b22 +
ξ nl
1

2

ξ nl
1

+ξ nl
2

D
]

, (30)

where ξ nl
1 and ξ nl

2 are defined as

ξ nl
1 ≡ N1

V −N1b11 −N2b22 + N1 N2

N1+N2
D

, (31)

ξ nl
2 ≡ N2

V −N1b11 −N2b22 + N1 N2

N1+N2
D

. (32)

In the thermodynamical limit the average particle num-
bers N1 and N2 are proportional to V as Nq = n nl

q V .

Then the volume V disappears in the definitions of ξ nl
1

and ξ nl
2 given by Eqs. (31, 32) , and they can be solved

for either the density n nl
1 or n nl

2 ,

n nl
1 (T, µ1, µ2) =

ξ nl
1

1 + ξ nl
1 b11 + ξ nl

2 b22 − ξ nl
1

ξ nl
2

ξ nl
1

+ξ nl
2

D
, (33)

n nl
2 (T, µ1, µ2) =

ξ nl
2

1 + ξ nl
1 b11 + ξ nl

2 b22 − ξ nl
1

ξ nl
2

ξ nl
1

+ξ nl
2

D
. (34)

The ξ nl
q = ξ nl

q (T, µ1, µ2) are the solutions of the coupled
Eqs. (29) and (30) , respectively.

Hence, the pressure (27) can be rewritten in terms of
ξ nl
1 (29) and ξ nl

2 (30) ,

p nl(T, µ1, µ2) = T
(

ξ nl
1 + ξ nl

2

)

, (35)

supposed that Eqs. (33, 34) are taken into account. If
the definitions (31) and (32) are used for ξ nl

1 and ξ nl
2 ,

the pressure formula (35) coincides with the canonical
expression (17) for N1 = N1 and N2 = N2 .

Since the formulation is thermodynamically self-
consistent the identity nq ≡ ∂p(T, µ1, µ2)/∂µq leads to
Eqs. (33, 34) as well.

The grand canonical formulae of the linear approxima-
tion [13] are obtained exactly as presented for the non-
linear case in Eqs. (27–35) . In the linear case the two
coupled transcendental equations are
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ξ lin
1 (T, µ1, µ2) = A1 exp

[

−ξ lin
1 b11 − ξ lin

2 b̃12

]

, (36)

ξ lin
2 (T, µ1, µ2) = A2 exp

[

−ξ lin
2 b22 − ξ lin

1 b̃21

]

, (37)

with the definitions

ξ lin
1 ≡ N1

V −N1b11 −N2b̃21

, (38)

ξ lin
2 ≡ N2

V −N2b22 −N1b̃12

. (39)

The expressions for the particle densities are found by
solving Eqs. (38, 39) for either n lin

1 or n lin
2 ,

n lin
1 (T, µ1, µ2) (40)

=
ξ lin
1 (1 + ξ lin

2 [b22 − b̃21])

1 + ξ lin
1 b11 + ξ lin

2 b22 + ξ lin
1 ξ lin

2 [b11b22 − b̃12b̃21]
,

n lin
2 (T, µ1, µ2) (41)

=
ξ lin
2 (1 + ξ lin

1 [b11 − b̃12])

1 + ξ lin
1 b11 + ξ lin

2 b22 + ξ lin
1 ξ lin

2 [b11b22 − b̃12b̃21]
.

For the linear approximation the pressure (26) can be
rewritten in terms of ξ lin

1 (36) and ξ lin
2 (37) ,

p lin(T, µ1, µ2) = T
(

ξ lin
1 + ξ lin

2

)

, (42)

if Eqs. (40, 41) are taken into account, like in the non-
linear case.

B. Comparison of both Approximations

Let us briefly return to the usual VdW case, the
one-component case. The corresponding transcendental
equation is obtained from either Eqs. (29, 30) or (36, 37)
by setting R1 = R2 ≡ R and A1 = A2 ≡ A ,

ξ oc(T, µ) = A exp [−ξ oc b] , (43)

whereas b ≡ b11 = b22 . The transcendental factor

exp[−ξ oc b] has the form of a suppression term, and the
solution ξ oc ≡ p oc/T of this transcendental equation ev-
idently decreases with increasing b for constant T and
µ . Then in turn, the corresponding particle density
n oc = ξ oc/(1 + ξ oc b) is suppressed in comparison with
the ideal gas due to the lower ξ oc and the additional
denominator. Thus, a suppressive transcendental factor
corresponds to a suppression of particle densities.

Now it can be seen from Eqs. (29, 30) and (36, 37) that
the transcendental factors of both two-component ap-
proximations contain as well this usual one-component-

or VdW-like suppressive part exp[−(p/T ) bqq] . But since

it is D ≥ 0 and b̃pq < bpp , respectively, there is further-
more an attractive part in each corresponding transcen-
dental factor.

In the non-linear approximation the attractive part can
even dominate the suppressive part for the smaller com-
ponent, e. g. in Eq. (30) for R2 < R1 . Then the larger

component can reach densities n nl
1 higher than 1/b11 ,

analogous to the CE . A detailed discussion is given in
App. C .

High densities in the canonical treatment correspond
to large values of the chemical potentials in the grand
canonical treatment. In the limit

µ1/T → ∞ (T, µ2 = const.) or ξ nl
1 → ∞ (44)

the solution of Eq. (30) , ξ nl
2 , can be enhanced for in-

creasing ξ nl
1 instead of being suppressed, if R2 is suffi-

ciently small. This may be called the non-linear enhance-

ment . The behaviour of the non-linear approximation in
the limit (44) depends only on the ratio of the two radii
R1/R2 and is characterised by the coefficient

a2 ≡
√

D/b22 − 1 . (45)

A negative a2 relates to a suppressive transcendental fac-
tor in Eq. (30) . For equal radii R2 = R1 it is a2 = −1 ,
and the suppression is evidently not reduced but VdW-
like. For −1 < a2 < 0 this suppression is reduced, the
most strongly for a2 ≈ 0 .

In the case a2 = 0 the suppression for ξ nl
2 (30) disap-

pears in the limit (44) , on has ξ nl
2 → A2 = const. This

case provides the critical radius R2, crit (24) .
For a2 > 0 or R2 < R2, crit the non-linear enhancement

of ξ nl
2 occurs for increasing ξ nl

1 ; it is the stronger the
larger a2 is. Then n nl

1 (33) can exceed max(n oc
1 ) = 1/b11 ,

whereas n nl
2 (34) does not vanish (see App. C for the

explicit fomulae). The density max(n̂ nl
1 ) = 4/b11 is

achieved for a2 → ∞ or R2 → 0 .
The suppression in the transcendental factor of ξ nl

1 (29)
is generally reduced for R2 < R1 , the more strongly the
smaller R2 is, but there is no enhancement possible in
the limit (44) .

IV. RELATIVISTIC EXCLUDED VOLUMES

In this section we will investigate the influence of re-
lativistic effects on the excluded volumes of fast moving
particles by accounting for their ellipsoidal shape due to
Lorentz contraction. In Ref. [15] a quite simple, ultra-
relativistic approach has been made to estimate these
effects: instead of ellipsoids two cylinders with the corre-
sponding radii have been used to calculate approximately
the excluded volume term bpq for the two-component
mixture. The resulting relativistic excluded volumes de-
pend on the temperature and contain the radii and the
masses as parameters. The simple, non-mixed term reads
[14]

bqq(T ) = αqq

(

37π

9

σq

φq
+

π2

2

)

R 3
q , (46)

where σq ≡ σ(T ; mq, gq) denotes the ideal gas scalar den-
sity,
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σ(T ; m, g) =
g

2π2

∞
∫

0

dk k2 m

E(k)
exp

[

−E(k)
T

]

. (47)

The expression for the mixed case can be derived sim-
ilarly from [15] ,

b12(T ) = α12

{(

σ1

φ1
f1 + π2

4
R2

R1

)

R 3
1 (48)

+
(

σ2

φ2
f2 + π2

4
R1

R2

)

R 3
2

}

,

whereas the abbreviations f1 and f2 are dimensionless
functions of both radii,

f1 = π
3

(

2 + 3R2

R1
+

7R 2
2

6R 2
1

)

, f2 = π
3

(

2 + 3R1

R2
+

7R 2
1

6R 2
2

)

.

The normalisation factors

α11 = α22 = 16
37
3 + 3π

2

, (49)

α12 =
2π
3 (R1+R2)

3

(

f1+
π2

4
R2

R1

)

R 3
1
+

(

f2+
π2

4
R1

R2

)

R 3
2

(50)

are introduced to normalise the ultra-relativistic approx-
imations (46, 48) for T = 0 to the corresponding non-
relativistic results. For the hadron gas, however, these
Boltzmann statistical formulae will only be used at high
temperatures, where effects of quantum statistics are neg-
ligible.

Note that it is not appropriate to consider tempera-
ture dependent hard-core radii Rp(T ) or Rq(T ) since the
bpq(T ) terms give the Lorentz-contracted excluded vol-

umes and are involved functions of T, mp, mq, Rp and
Rq . However, for a given value of bpq(T ) the necessary
hard-core radii Rp and Rq will obviously depend on the
temperature.

It is evident that the formulae (46, 48) suffice already
for the multi-component case, because even a multi-
component VdW formulation contains only bpq terms.

For both approximations the expressions for the pres-
sure (35) or (42) and corresponding particle densities (33,
34) or (40, 41) remain unchanged. However, due to the
temperature dependence of the relativistic excluded vol-
umes the entropy density is modified

s(T, µ1, µ2) ≡
∂

∂T
p(T, µ1, µ2)

≡ snrel + srel(∂T b11, ∂T b22, ∂T b12) . (51)

The additional term srel depends on temperature deriva-
tives of the relativistic excluded volumes, ∂T bpq ≡
∂bpq/∂T , which represent their thermal compressibility.

Furthermore, the term srel generates additional terms
for the energy density, according to e ≡ Ts− p + µ1n1 +
µ2n2 . In the non-linear approximation one obtains

e nl(T, µ1, µ2)

= n nl
1

ǫ1
φ1

+ n nl
2

ǫ2
φ2

− (n nl
1 + n nl

2 ) T 2 × (52)

×
(

ξ nl
1 ∂T b11 + ξ nl

2 ∂T b22 − ξ nl
1 ξ nl

2

ξ nl
1

+ξ nl
2

∂T D
)

,

and the linear approximation yields

e lin(T, µ1, µ2) = n lin
1

ǫ1
φ1

+ n lin
2

ǫ2
φ2

(53)

− n lin
1 T 2

(

ξ lin
1 ∂T b11 + ξ lin

2 ∂T b̃12

)

− n lin
2 T 2

(

ξ lin
2 ∂T b22 + ξ lin

1 ∂T b̃21

)

,

whereas ǫq ≡ ǫ(T ; mq, gq) denotes the ideal gas energy
density

ǫ(T ; m, g) =
g

2π2

∞
∫

0

dk k2 E(k) exp
[

−E(k)
T

]

. (54)

The additional terms in the entropy density (51) and in
the energy density (52) or (53) which contain tempera-
ture derivatives do evidently not occur in the case of the
usual non-relativistic, i. e. constant excluded volumes.

Let us now study the hadronic equation of state gen-
erated by each of the two-component VdW approxima-
tions and their modifications due to relativistic excluded
volumes. When used to describe hadronic particles, the
hard-core radii Rq should be considered as parameters

rather than particle radii. We identify the first compo-
nent as nucleons (m1 ≡ mn = 939 MeV , µ1 ≡ µn = µB

and g1 ≡ gn = 4 for symmetric nuclear matter) and the
second as pions (m2 ≡ mπ = 138 MeV , µ2 ≡ µπ = 0
and g2 ≡ gπ = 3) . Quantum statistical effects other
than the degeneracy factors gq are neglected. To repro-
duce experimental data, however, it would be necessary
to consider all hadrons and hadronic resonances as well
as the contributions from hadronic decays into daughter
hadrons.

For some examples the temperature dependence of
the relativistic excluded volumes is shown in Fig. 2 (a) ,
given in units of the corresponding non-relativistic terms,
bpq = bpq(0) . The solid line and the short dashes show
the basic excluded volumes b11(T ) and b22(T ) , respec-
tively. In these relative units the decreases of b11(T ) and
b22(T ) depend only on the corresponding masses. It is ap-
parent that the pion excluded volume b22(T ) is affected
much stronger than the excluded volume of the nucleons,
b11(T ) . The dotted line shows the mixed volume term
b12(T ) , and the long dashes show the compound volume
term D(T ) ≡ b11(T )+b22(T )−2b12(T ) . These two terms
depend obviously on both masses and both radii.

The curves for the generalised excluded volume terms
of the linear approximation b̃12(T ) and b̃21(T ) behave
similarly to b12(T ) .

Introducing the relativistic excluded volumes bpq(T ) ,
however, has two effects. First, the maximum densities
become larger since it is generally 1/bqq(T ) > 1/bqq as
seen in Fig. 2 (a) . Furthermore, the balance between
the lighter and the heavier species is changed because
the lighter species is affected more than the heavier at
the same temperature: For the above parameters it is
b22(T )/b22 ≤ b11(T )/b11 .

8



0 50 100 150 200 250
T [MeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
b p

q(
T

)
/b

pq
(a)

b22(T) / b22

b12(T) / b12

b11(T) / b11

D(T) / D

0 50 100 150 200 250
T [MeV]

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

a 2
(T

)

(b)

R2 = 0.40 fm
R2 = 0.30 fm
R2 = 0.25 fm

FIG. 2. Temperature dependence of the relativistic ex-
cluded volume terms for m1 = mn, m2 = mπ, R1 = 0.6 fm .
(a) Relative values for R2 = 0.3 fm : b11(T )/b11 , b12(T )/b12 ,
b22(T )/b22 and D(T )/D (solid line, dotted line, short and
long dashes, respectively). The relativistic excluded volume
of light species (b22(T )/b22) is affected more strongly by tem-
perature.
(b) The characteristic coefficient of the non-linear approxi-

mation a2(T ) = (
√

D(T )/b22(T ) − 1) for various R2 = 0.25 ,
0.3 and 0.4 fm . The non-linear enhancement (a2(T ) > 0) be-
comes stronger due to the decrease of the relativistic excluded
volumes with increasing temperature.

In the non-linear approximation this balance is char-
acterised by the coefficient a2 defined by Eq. (45) .
In Fig. 2 (b) the temperature dependence of a2(T ) ≡
(
√

D(T )/b22(T ) − 1) is shown for three different values
of R2 . The relativistic coefficient a2(T ) increases with
T , i. e. the non-linear enhancement becomes stronger for
higher temperatures. For some values of R2 , e. g. R2 =
0.4 fm , a primary suppression a2(0) ≡ a2 < 0 , turns
into an enhancement a2(T ) > 0 , when the temperature
is sufficiently high. For temperature dependent excluded
volumes R2, crit looses its meaning; here, only a2(T ) > 0
is the valid condition for the occurrence of the non-linear
enhancement or densities n nl

1 > 1/b11(T ) .
The linear coefficient, ã2(T ) = −2b12(T )/(b11(T ) +

b22(T )) , is not strongly affected by temperature for the
above choice of hadronic parameters: It increases slightly
with T but remains negative. Hence, changes in the bal-
ance between the lighter and the heavier species play a
minor role for the linear approximation.

Particle densities for nucleons and pions in units of
n0 = 0.16 fm−3 vs. µ1/m1 ≡ µn/mn are shown in
Figs. 3 (a) and (b) for T = 185 MeV . The linear and
non-linear results are shown for constant excluded vol-
umes with short dashes and solid lines, respectively, and
further for relativistic excluded volumes with dotted lines
and long dashes, respectively. At this high tempera-
ture the relativistic results are significantly higher than
the non-relativistic result. A difference between the lin-
ear and the non-linear approximation due to the non-
linear enhancement becomes noticeable only for high
µn/mn > 0.8 . Thus, for Rn = R1 = 0.6 fm from
above, the linear and non-linear approximation are prac-
tically equivalent for nucleon densities below nn ≈ 0.8 n0 ,
i. e. for densities below about n1 ≈ 1/(2 b11) . On the
other hand, due to the strong decrease of b22(T ) with
increasing temperature, the influence of the relativistic
excluded volumes is essential for temperatures of the or-
der of T ≈ mπ .

The presence of the additional terms containing tem-
perature derivatives in the energy density (52) or (53)
makes it impossible to convert a VdW gas with relativis-
tic excluded volumes into a gas of free streaming parti-
cles. Therefore, it is problematic to use these formulae
for the post-freeze-out stage. For the latter the quantities
of the free streaming particles without any interaction
should be used, see discussion in [17,18] and references
therein. However, these equations of state may be used to
describe the stage between chemical and thermal freeze-
out, i. e. a pre-freeze-out stage in terms of Refs. [17,18] .
This is examplified in the next section.
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FIG. 3. Comparison of the model predictions for the
nucleon (a) and pion (b) density nn and nπ , respectively,
vs. µn/mn (R1 = 0.6 fm , R2 = 0.3 fm and T = 185 MeV ,
densities in units of n0 = 0.16 fm−3). In both figures the two
upper lines correspond to relativistic excluded volumes bpq(T )
and the two lower lines to non-relativistic excluded volumes
bpq . The results of the linear and non-linear approximation
coincide – only for extremely large µn/mn the non-linear re-
sults lie slightly higher than the corresponding linear results.
The deviations due to relativistic excluded volumes are sig-
nificant.

V. HARD-CORE RADII

FROM PARTICLE YIELD RATIOS

As a simple application of the equations of state pre-
sented above, let us re-evaluate the thermal model fit pa-
rameters for particle yield ratios of Ref. [6] , namely the
hard-core radii of pions Rπ and other hadrons Ro . A two-
component VdW excluded volume model has been used
there to explain the pion abundance in A+A-collisions
by a smaller hard-core radius for the pions than for the
other hadrons. The ratios has been fitted to BNL AGS
(Au+Au at 11 AGeV) and CERN SPS (Pb+Pb at 160
AGeV) data [7] within a thermal model, including all
resonances up to 2 GeV and using quantum statistics.

The applied model, however, corresponds to the in-
correct separated model as pointed out in Sect. I . For
convenience we give these formulae in Boltzmann approx-
imation. Within the previously defined notation the two
coupled transcendental equations read

ξ sp
1 (T, µ1, µ2) = A1 exp [−(ξ sp

1 + ξ sp
2 ) b11] , (55)

ξ sp
2 (T, µ1, µ2) = A2 exp [−(ξ sp

1 + ξ sp
2 ) b22] , (56)

wheras p sp(T, µ1, µ2) = T (ξ sp
1 + ξ sp

2 ) . In this context
A1 represents a sum over the contributions of all hadron
species but pions, while A2 corresponds to the pions only.

The expressions for the particle densities are obtained
from n sp

q ≡ ∂p sp/∂µq ,

n sp
1 (T, µ1, µ2) =

ξ sp
1

1 + ξ sp
1 b11 + ξ sp

2 b22
, (57)

n sp
2 (T, µ1, µ2) =

ξ sp
2

1 + ξ sp
1 b11 + ξ sp

2 b22
. (58)

Solving these equations for ξ sp
1 and ξ sp

2 one recovers the
canonical pressure formula of the separated model (11)
as announced in Sect. II .

Due to the separation of both components in this
model there is no excluded volume term b12 for the in-
teraction between different components at all. This is an
essential difference to both the linear and the non-linear
approximation. Note that the separated model is not a
two-component VdW approximation because it cannot
be obtained by approximating the CPF (13) .

The transcendental factors of the formulae (55, 56) ex-
hibit a constant VdW-like suppression exp[−(p/T ) bqq] .
There is a reduction of this suppression in the linear and
in the non-linear approximation, as discussed in Sect. III .
The VdW-like suppression is reduced, if b12 appears in
the corresponding formulae since b12 is smaller than b11

for R2 < R1 . It is evident that the deviation of the linear
and non-linear approximation from the separated model
is the larger the more R1 and R2 differ from each other.

In the first step of the fit procedure of Ref. [6] only
the hadron ratios excluding pions have been taken to
find the freeze-out parameters. For AGS T ≈ 140 MeV ,
µB ≈ 590 MeV and for SPS T ≈ 185 MeV , µB ≈ 270
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MeV have been obtained. In the second step, a param-
eter introduced as the pion effective chemical potential

µ ∗
π has been fitted to the pion-to-hadron ratios. Using

Boltzmann statistics it can be shown that the pion en-
hancement is thoroughly regulated by the value of µ ∗

π [6] ;
one has obtained µ ∗

π ≈ 100 MeV for AGS and µ ∗
π ≈ 180

MeV for SPS data, respectively.
The pion effective chemical potential depends explic-

itly on the excluded volumes but also on the pressure.
The pressure itself is a transcendental function depend-
ing solely on the excluded volumes since T and µB

are already fixed by step one. In Ref. [6] the formula
µ ∗

π ≡ (vo − vπ) p(vo, vπ) has been obtained for the sep-
arated model, where vπ ≡ b22 and vo ≡ b11 are the ex-
cluded volumes corresponding to the hard-core radii of
pions Rπ ≡ R2 and other hadrons Ro ≡ R1 , respec-
tively. Thus, the µ ∗

π values for AGS and SPS data define
two curves in the Rπ–Ro-plane. The main conclusion of
Ref. [6] is that the intersection point of these two curves
(Rπ = 0.62 fm , Ro = 0.8 fm) gives the correct pair
of hard-core radii for pions and for the other hadrons,
i. e. AGS and SPS data are fitted simultaneously within
the applied model.

In Ref. [8] these values of Ro and Rπ have been crit-
icised for being unreasonably large. There, a complete
fit of solely SPS data has been performed within a sep-
arated model. The best fit has been obtained for equal
hard-core radii, Rπ = Ro = 0.3 fm , motivated by nu-
cleon scattering data. Good agreement has been found
as well for a baryon hard-core radius, RBar = 0.3 fm , and
a common hard-core radius for all mesons , RMes = 0.25
fm , choosen in accord with the above ratio of radii,
Ro/Rπ = 0.8/0.62 . Larger hard-core radii, especially
those of Ref. [6] , are quoted as giving distinctly worse
agreement.

Assuming the validity of Boltzmann statistics, we have
re-calculated the Ro(Rπ)-curves for the above µ ∗

π val-
ues; firstly in the separated model (55–58) , i. e. as pre-
sented in [6] . The resulting curves, shown as thin lines in
Fig. 4 (a) , naturally match the results of the underlying
fit of Ref. [6] , which are indicated by markers.

Then we have considered the linear and the non-linear
approximation. Due to the occurence of b12 terms in
these two cases, both functional forms of µ ∗

π are essen-
tially different from the separated case. Consequently,
the shapes of the Ro(Rπ)-curves are different as well.
We find distinct deviations from the separated model,
especially for Rπ → 0 , and the values for the intersec-
tion point are slightly lower; see thin lines in Fig. 4 (b)
for the linear exrapolation. The non-linear approxima-
tion gives identical results for this purpose because the
hadron densities are too small for a noticeable non-linear
enhancement.

The crucial point is now to turn on the relativistic
temperature dependence of the excluded volumes. To
keep the analysis simple we treat only pions this way
since they give the strongest effect.
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FIG. 4. Fits of particle yield ratios for AGS and SPS data
[7] with the separated model and the linear approximation.
The thin lines show the fits for the separated model (a) and
the linear approximation (b) ; the non-linear approximation
gives identical results for the latter case.
The thick lines in (a) and (b) show the corresponding curves
for relativistic excluded volumes vπ = b22(T ) : there is no
intersection for either of the three models. In both figures
the results of the fit from Ref. [6] for AGS and SPS data are
indicated by circles and crosses, respectively.
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Although the other hadrons are assumed to have equal
hard-core radii, their relativistic excluded volumes would
be different for T > 0 , according to their different
masses. To check the influence of relativistic excluded
volumes for all particles, we have used one average mass
of 1 GeV for all other hadrons. The corresponding
change in the Ro-values are below 5% .

The results of the fit for relativistic excluded volumes
for pions are shown in Figs. 4 (a) and (b) as thick lines.
Though this approach is more realistic, there is no inter-
section point for any of the three models even for very
large radii Ro, Rπ ≫ 0.5 fm . For the approximated case
of a single averaged hadron mass there is no intersection
either. Because of the different freeze-out temperatures
for AGS and SPS the vπ(T ) ≡ b22(T ) values are changed
differently in both cases, and so are the scales for the
corresponding Rπ .

Due to the errors in experimental data one ought to
obtain a corridor instead of a curve for each set of data.
Consequently, the particle yield ratios can be reproduced
well by e. g. Ro ≈ 0.4 fm , Rπ ≈ 0.2 fm or larger values
for any of the models with relativistic excluded volumes.
Therefore, we conclude that the fit procedure proposed in
Ref. [6] is not suitable to find a unique pair of hard-core
radii for pions and other hadrons, as long as a best fit is
searched for just two sets of data of particle yield ratios.
The use of a relativistic excluded volume for pions along
with a correct approximation reduce the value of the nec-
essary nucleon hard-core radius essentially towards more
realistic values.

VI. SUMMARY

In the present work several equations of state for the
two-component Van der Waals excluded volume model
are derived and investigated. We have discussed two es-
sentially different formulations, the linear and the non-
linear approximation.

The non-linear approximation is the simplest possibil-
ity. Here, the large component can reach higher densities
n1 than the usual limiting VdW density 1/b11 , if the
other component has a suffiently small hard-core radius,
R2 < R2, crit . In the linear approximation the densities
cannot exceed the usual limiting VdW densities 1/b11

and 1/b22 , but generalised excluded volume terms have
to be introduced.

For both approximations the suppression factors of the
grand canonical formulae contain a VdW-like term, pro-
portional to exp[−(p/T ) bqq] , which however is reduced
non-trivially. In the linear case there is a slight reduc-
tion, wheras in the non-linear case this reduction can
turn the suppression even into an enhancement for the
smaller component, which leads to exceeding of 1/b11 for
the density of the larger component n1 .

The commonly used formulae of the separated model
are shown to be not suitable for the two-component case,

because they correspond to a system where both compo-
nents are separated from each other and cannot mix. In
this model the grand canonical suppression factor is just
VdW-like and has no reduction of the suppression.

Furthermore relativistic, i. e. Lorentz-contracted, ex-
cluded volumes have been introduced. Naturally, the rel-
ativistic excluded volume per particle decreases with ris-
ing temperature. This effect is the stronger the lighter
the particle species is. The suppression of particle densi-
ties in VdW models is lower for a component of smaller
excluded volume in comparison with a component of
larger excluded volume. Therefore, the temperature de-
pendence of the relativistic excluded volumes causes a
reduction of the particle densities suppression.

The full equations of state have been presented, for
both the linear and non-linear approximation, with con-
stant and with relativistic excluded volumes. For the
entropy density and energy density there are additional
terms containing temperature derivatives of the relativis-
tic excluded volume terms due to their ’thermal com-
pressibility’. In comparison with the non-relativistic
case, the expressions for the pressure and the particle
densities remain unchanged, but the possible range of
values is obviously wider, since it is generally 1/b11(T ) ≥
1/b11 and 1/b22(T ) ≥ 1/b22 .

As an application of the derived formulations a fit
of particle yield ratios for SPS and AGS has been re-
evaluated. In Ref. [6] this fit had been done in a separated
model by adjusting the hard-core radii for the pions Rπ

and for the other hadrons Ro . The results of the new fit
are essentially different from the separated model but co-
incide for both the linear and non-linear approximation.
The picture changes drastically, however, if relativistic
excluded volumes are adopted for pions. The basic idea
of the fit – one pair of hard-core radii suffices to fit AGS
and SPS data simultaneously – does not lead to a result
anymore. This is the case for the separated model and for
both approximations, linear and non-linear. Experimen-
tal uncertainties lead to a region of possible values in the
Ro–Rπ-plane; one could describe the data for Ro ≥ 0.4
fm and Rπ ≥ 0.2 fm .

We conclude that there are two causes of an enhance-

ment of particle densities, e. g. the thermal pion abun-
dance, in VdW descriptions: First, the density suppres-
sion is generally lower for the smaller component in two-
component models. Second, there is a further reduc-
tion of the density suppression due to the relativistic
excluded volumes. The latter are essentially smaller for
light hadron species than for heavy species, especially for
temperatures T ≫ 50 MeV .

When applied to the hadron gas, the linear and non-
linear results almost coincide for nucleon densities up to
n0 ≈ 0.16 fm−3 (for Ro ≤ 0.6 fm) since the non-linear en-
hancement does not appear there, but the deviation from
the incorrect separated model is distinct. However, the
formulae of the non-linear approximation are essentially
simpler than these of the linear approximation.

The influence of relativistic effects on the excluded vol-
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umes becomes indispensable for temperatures typical for
heavy ion collisions. Therefore, it is necessary to include
a correct two- or multi-component VdW approximation
– linear or non-linear – as well as relativistic excluded
volumes in future calculations.
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APPENDIX A: THE TWO VDW

APPROXIMATIONS IN THE CE

In the following we will study the differences between
the linear and the non-linear approximation: the total
excluded volumes vq = vq(N1, N2) of the corresponding
partial pressures. In the linear pressure formula (20) each
component has its own total excluded volume given by

v lin
1 ≡ N1b11 + N2b̃21 , v lin

2 ≡ N1b̃12 + N2b22 , (A1)

whereas in the non-linear pressure formula (17) there is
a common total excluded volume for both components

v nl
1 = v nl

2 = v nl ≡ N1b11 + N2b22 − N1 N2

N1+N2
D . (A2)

It can be readily checked that it is either v lin
1 ≤ v nl ≤ v lin

2

or v lin
1 ≥ v nl ≥ v lin

2 , i. e. the pole of the non-linear pres-
sure always lies between both poles of the linear pres-
sure. Hence, there are values N1, N2 , where the non-
linear pressure is still finite, but the linear pressure for-
mula is yet invalid since one of the partial pressures has
already become infinite. Consequently, the domain of the
non-linear approximation is larger.

For given V the two domains can be expressed by the
limiting densities (22) and (23) , which are defined by the
poles vq(N1, N2) = V of the corresponding pressure. In
the linear approximation one obtains the expressions

n̂ lin
1,1(n2) =

1 − b̃21n2

b11
, n̂ lin

1,2(n2) =
1 − b22n2

b̃12

. (A3)

For given n2 , therefore, the domain of p lin (20) is

0 ≤ n lin
1 < min

{

n̂ lin
1,1(n2) , n̂ lin

1,2(n2)
}

. (A4)

In the non-linear approximation there is solely one lim-
iting density

n̂ nl
1 (n2) =

1−2 b12n2+
√

(1−2b12n2)2+4b11n2 (1−b22n2)

2 b11
. (A5)

Consequently, for given n2 the domain of p nl (17) is

0 ≤ n nl
1 < n̂ nl

1 (n2) . (A6)

In the non-linear approximation there is furthermore a
region where the pressure has negative partial deriva-
tives with respect to the smaller particles’ number,
∂p nl/∂N2 < 0 . The condition ∂p nl/∂N2 = 0 defines
the boundary of this region

n̂ nl, bd
1 (n2) (A7)

=
1−2 (b12−b22) n2+

√
(1−2 (b12−b22) n2)2+8 (b11−b12) n2

4 (b11−b12) .

For given n2 a negative derivative ∂p nl/∂N2 < 0 oc-

curs only at a density n1 > n̂ nl, bd
1 , while the deriva-

tive ∂p nl/∂N1 is always positive for R2 ≤ R1 as readily
checked.

In Fig. 1 (a) the functions n̂1(n2) are presented in di-

mensionless variables n̂1b11 and n2b22 . The properties
of these dimensionless functions depend only on the ra-
tio of the two radii R2/R1 . The smaller this ratio is,
the higher is the maximum value of n̂ nl

1 , while the re-
gion of negative derivatives ∂p nl/∂N2 becomes narrower.
The straight line n̂ lin

1,1(n2) starts always at 1/b11 , but

its slope decreases for smaller R2/R1 , whereas n̂ lin
1,2(n2)

ends at 1/b22 and its slope increases. The pressure of the
separated model (11) would yield one straight line from
n1b11 = 1 to n2b22 = 1 in Fig. 1 (a) , for any ratio of the
radii R1 and R2 .

For very small ratios R2/R1 , i. e. for R2 → 0 , one finds
from Eq. (A2) that v nl → N1b11 [1 − 3

4N2/(N1 + N2)] .

This yields the maximum density max(n̂ nl
1 ) = 4/b11 for

N2 ≫ N1 . Thus n̂ nl
1 exceeds the maximum density of

the linear approximation or of the corresponding one-
component VdW gas, max(n̂ lin

1,1) = max(n oc
1 ) = 1/b11 ,

by a factor of four in this case.
Note that the value 4/b11 appears in the linear approx-

imation as well: For v lin
2 → V it is max(n̂ lin

1,2) = 4/b11 at
n2 = 0 , but this density cannot be achieved because
p lin
1 (n1, n2) is infinite for n1 ≥ 1/b11 .
Let us consider now the consequences of negative

derivatives ∂p nl/∂N2 < 0 in the non-linear approxi-
mation. If a negative ∂p nl/∂N2 occurs for a density
n ′

1 = const. at n2 = 0 , the pressure p nl(n ′
1, n2) has

a minimum at a certain density n2, min > 0 , which is

determined by the boundary n̂ nl, bd
1 (n2) . For increas-

ing n1 along the boundary, consequently, the non-linear
pressure is always lower than for increasing n1 at fixed
n2 = 0 . Hence along the boundary higher densities can
be achieved, in particular n1 > 1/b11 .

Therefore, exceeding of n nl
1 = 1/b11 requires that the

boundary starts inside the the non-linear domain at n2 =

0 . Thus the condition n̂ nl,bd
1 (0) < 1/b11 provides the

critical radius R2, crit (24) ,

b11 < 2b12 ; R2, crit(R1) = (
3
√

4 − 1)R1 . (A8)

On the other hand the boundary starts at n1 = 8/(14 b11)
for R2 → 0 at n2 = 0 , i. e. for any density b11n1 ≤
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8/14 ≈ 1/2 negative values of ∂p nl/∂N2 do not occur for
any radii.

Although it is pathological that for high densities n1

the non-linear pressure firstly decreases, if particles of the
second and smaller component are added to the system,
there is a reasonable explanation for the lowered pressure
along the boundary (A7) for small radii R2 < R2, crit .

Consider, for instance, n1b11 = 0.9 in Fig. 1 (a) . Since
it is R2/R1 = 0.4 , the dimensionless density of the small

particles at the boundary n̂ nl,bd
1 (n2) nearly vanishes,

n2b22 ≈ 0.05 , whereas the absolute amounts of the small
and large particles are about equal. For the excluded
volume interaction of the large particles in the pressure
formula (17) , therefore, the influence of the mixed term
b12 becomes comparable to that of the distinctly larger
non-mixed term b11 .

For R2/R1 ≪ 1 one obtains n2 ≫ n1 near the bound-
ary at n1b11 = 0.9 , i. e. the large particles are completely
surrounded by the smaller particles and interact mostly
with these but hardly with other large particles anymore.
In this situation, consequently, the excluded volume in-
teraction of the large particles is governed by the essen-
tially smaller b12 and not by b11 ≤ 8 b12 .

One might interprete this behaviour as an effective at-
traction between small and large particles, but it is rather
a strong reduction of the large particles’ excluded volume
suppression.

As VdW approximations are low density approxima-
tions they coincide for these densities, but they evidently
become inadequate near the limiting densities: both dis-
cussed formulations do evidently not match the real gas

of rigid spheres there.
For high densities the linear approximation behaves

natural, i. e. it is ∂p lin/∂Nq > 0 always. However, one

has to introduce the additional terms b̃12 and b̃21 . For
the choice (21) these terms provide a one-component-like
behaviour in the limits R2 = R1 and R2 = 0 , but they
have no concrete physical meaning.

In the non-linear approximation there occur pathologic
pressure derivatives ∂p nl/∂N2 < 0 for R2 ≪ R1 . How-
ever, the non-linear formulae may be used for special pur-
poses, e. g. for n1 > 1/b11 at intermediate n2b22 , where
the linear approximation is yet invalid.

APPENDIX B: STABILITY OF THE

NON-LINEAR APPROXIMATION

The non-linear enhancement in the GCE or the oc-
curence of negative values for ∂p nl/∂Nq in the CE sug-
gest a further investigation concerning the thermody-
namical stability of the non-linear approximation.

One can readily check that in the CE it is ∂p nl/∂V < 0
generally, so there is no mechanical instability. To in-
vestigate wether there is a chemical instability [19] it is
necessary to study partial derivatives with respect to the
particle numbers, ∂/∂Nq , of the chemical potentials

µp(T, V, N1, N2) ≡ −T ∂
∂Np

ln[Z(T, V, N1, N2)] . (B1)

Partial derivatives of the pressure with respect to the
particle numbers ∂p/∂Nq have no relevance here.

For the examination of chemical stability it is ap-
propriate to switch from the free energy of the CE,
F (T, V, N1, N2) ≡ −T ln[Z(T, V, N1, N2)] , to the Gibbs
free energy or free enthalpie

G(T, p, N1, N2) ≡ F + p V = µ1N1 + µ2N2 , (B2)

where µq(T, p, N1, N2) ≡ ∂G/∂Nq . This requires that
p(T, V, N1, N2) can be solved for V (T, p, N1, N2) , which
is the case for the non-linear approximation,

V nl(T, p, N1, N2) = N1+N2

p/T + N1b11 + N2b22 − N1 N2

N1+N2
D .

Further it is useful to introduce the molar free enthalpie
g ≡ G/(N1 + N2) = g(T, p, x1) with the molar fractions
x1 ≡ N1/(N1 + N2) and (1 − x1) = x2 ≡ N2/(N1 + N2)
of component 1 and 2 , respectively. Then the chemi-
cal stability of a binary mixture [19] corresponds to the
condition

∂2

∂x 2
1

g(T, p, x1) = ∂µ1(T,p,x1)
∂x1

− ∂µ2(T,p,x1)
∂x1

> 0 . (B3)

For the non-linear approximation one obtains

g nl(T, p, x1)

= x1

{

T ln
[

x1

φ1

p
T

]

+ p
(

b11 − (1 − x1)
2 D

)

}

(B4)

+ (1 − x1)
{

T ln
[

1−x1

φ2

p
T

]

+ p
(

b22 − x 2
1 D

)

}

,

and thus condition (B3) is satisfied:

∂2

∂x 2
1

g nl(T, p, x1) = T
x1

+ T
1−x1

+ p 2D > 0 . (B5)

Therefore, the system described by the non-linear ap-
proximation is thermodynamically stable – despite the
pathologic behaviour in special cases. Due to the equiv-
alence of the thermodynamical ensembles this is true for
any representation of the model.

APPENDIX C: THE TWO VDW

APPROXIMATIONS IN THE GCE

In this part we will study the non-linear and the linear
approximation in the grand canonical ensemble. As in
the CE the differences between the linear and non-linear
approximation occur only for high densities of the larger
particles, nq , which correspond to large chemical poten-
tials µq in the grand canonical treatment. Therefore, we
will study the limit given by Eq. (44) : µ1/T → ∞ for
constant T, µ2 and R2 ≤ R1 , where it is ξ1 → ∞ .

The transcendental exponents of both approximations
contain an attractive part besides the usual VdW-like
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suppressive part exp[−(p/T ) bqq] : In the linear approxi-
mation (36, 37) the suppression is reduced, but the tran-
scendental exponents are always negative – whereas the
suppression in the non-linear approximation (29, 30) is
not only reduced, but the transcendental exponent of ξ nl

2

can even become positive in the above limit.
To examine the latter we rewrite the coupled transcen-

dental equations (29, 30) as

ξ nl
1 = φ1 exp

[

µ1

T

]

× (C1)

× exp

[

−
(

ξ nl
1 + ξ nl

2

)

b11

(

1 − D/b11

(ξ nl
1

/ξ nl
2

+1)
2

)]

,

ξ nl
2 = φ2 exp

[

µ2

T

]

× (C2)

× exp

[

−
(

ξ nl
1 + ξ nl

2

)

b22

(

1 − D/b22

(1+ξ nl
2

/ξ nl
1 )2

)]

.

If R2 is sufficiently smaller than R1 , then D/b22 is larger
than unity and the transcendental exponent of ξ nl

2 (C2)
can become positive,

0 < D
b22

−
(

1 +
ξ nl
2

ξ nl
1

)2

⇐⇒ ξ nl
2

ξ nl
1

< a2 ≡
√

D
b22

− 1 . (C3)

The coefficient a2 = a2(R1/R2) introduced here is the
crucial combination of excluded volumes in the non-linear
approximation. It characterises the behaviour of this ap-
proximation in the limit (44) , i. e. for ξ1 → ∞ .

For equal radii R2 = R1 it is a2 = −1 , and one has full
VdW-like suppression, ∝ exp[−(p/T ) bqq] . Negative a2

indicate the strength of suppression of ξ nl
2 for increasing

ξ nl
1 . For −1 < a2 < 0 the suppression is reduced, most

strongly for a2 ≈ 0 . In the case a2 = 0 there is no
suppression in the limit (44) but ξ nl

2 → A2 = const. for
ξ nl
1 → ∞ . Thus, the condition a2 = 0 provides the

critical radius,

D/b22 = 1 ⇐⇒ R2, crit = (
3
√

4 − 1)R1 , (C4)

which coincides with the canonical result (A8) .
For positive a2 or R2 < R2, crit the non-linear en-

hancement occurs: ξ nl
2 is enhanced by increasing ξ nl

1 as
long as the second exponent in (C2) is positive, i. e. for
ξ nl
2 < a2 ξ nl

1 . The transcendental factor of ξ nl
1 (C1) has

only a reduced suppression in this case. According to
Eq. (C3) one obtains

ξ nl
2 → a2 ξ nl

1 , but also n nl
2 → a2 n nl

1 , (C5)

since it is n nl
2 /n nl

1 = ξ nl
2 /ξ nl

1 due to Eqs. (33, 34) .
Using Eqs. (C5) and (C3) one obtains for the particle

densities (33, 34)

n nl
1 → 1

b11−a 2
2

b22
= 1

b11−(
√

D−
√

b22 )2
, (C6)

n nl
2 → a2 n nl

1

→ a2

b11−a 2
2

b22
=

√
b22

b22

√
D−

√
b22

b11−(
√

D−
√

b22 )2
. (C7)

It is clearly seen that the density n nl
1 can exceed 1/b11

for positive a2 . As in the CE the maximum value,
max(n nl

1 ) = 4/b11 , is achieved for R2 = 0 or a2 = ∞ .
Then, in the limit (44) the density of the second compo-
nent diverges, n nl

2 → ∞ , but its total excluded volume
vanishes, n nl

2 b22 → 0 , as seen from Eq. (C7) .
There is yet another case, where the condition (C3)

is fulfilled, the early enhancement : ξ nl
2 can be enhanced

with increasing µ2 for constant T and µ1 , if µ1 is suffi-
ciently large. This enhancement takes place only at small
µ2 , and it obviously vanishes when µ2 is large enough so
that ξ nl

2 ≥ a2ξ
nl
1 . The early enhancement is the direct

analogue to a negative derivative ∂p nl/∂Nq < 0 in the
CE .

The coupled transcendental equations of the linear
approximation (36, 37) may be rewritten similarly to
Eqs. (C1, C2) . For the choice (21) one obtains in terms
of D from Eq. (16)

ξ lin
1 (T, µ1, µ2) (C8)

= A1 exp
[

−
(

ξ lin
1 + ξ lin

2

)

b11

(

1 − ξ lin
2

ξ lin
1

+ξ lin
2

D
b11+b22

)]

,

ξ lin
2 (T, µ1, µ2) (C9)

= A2 exp
[

−
(

ξ lin
1 + ξ lin

2

)

b22

(

1 − ξ lin
1

ξ lin
1

+ξ lin
2

D
b11+b22

)]

.

In this case the condition for the enhancement of ξ lin
2 for

R2 ≤ R1 would be

ξ lin
2

ξ lin
1

< ã2 ≡ − 2b12
b11+b22

. (C10)

As ã2 is always negative the VdW-like suppression is
only reduced in this approximation. Like in the non-
linear approximation ã2 = −1 corresponds to equal radii
R2 = R1 and full VdW-like suppresion, whereas ã2 =
−1/4 (R2 = 0) corresponds to the most strongly reduced
suppresion in the linear approximation.

Thus, the densities n lin
q can not exceed the maximum

value 1/bqq of the corresponding one-component case.
Furthermore, the density n lin

2 (41) vanishes in the anal-
ogous limit to (44) , ξ lin

1 → ∞ , in contrast to the non-
linear behaviour.

In the case R1 ≤ R2 one would evidently investigate
the coefficients a1 ≡ (

√

D/b11 − 1) in the non-linear and
ã1 ≡ −(2b12)/(b11 + b22) = ã2 in the linear approxima-
tion, respectively.

[1] H. Stöcker, W. Greiner and W. Scheid Z. Phys. A 286

(1978) 121 ;
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