10 research outputs found

    Intestinal activation of Notch signaling induces rapid onset hepatic steatosis and insulin resistance.

    Get PDF
    Here we investigate the effects of expressing an activated mutant of Notch (ICD-E) in an inducible transgenic mouse model. Hepatic expression of ICD-E in adult animals has no detectable phenotype, but simultaneous induction of ICD-E in both the liver and small intestine results in hepatic steatosis, lipogranuloma formation and mild insulin resistance within 96 hours. This supports work that suggests that fatty liver disease may result from disruption of the gut-liver axis. In the intestine, ICD-E expression is known to produce a transient change in the proportion of goblet cells followed by shedding of the recombinant epithelium. We report additional intestinal transcriptional changes following ICD-E expression, finding significant transcriptional down-regulation of rpL29 (ribosomal protein L29), which is implicated in the regulation of intestinal flora. These results provide further evidence of a gut-liver axis in the development of fatty liver disease and insulin resistance and validate a new model for future studies of hepatic steatosis

    Dynamic partitioning of branched-chain amino acids-derived nitrogen supports renal cancer progression

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Metabolic reprogramming is critical for tumor initiation and progression. However, the exact impact of specific metabolic changes on cancer progression is poorly understood. Here, we integrate multimodal analyses of primary and metastatic clonally-related clear cell renal cancer cells (ccRCC) grown in physiological media to identify key stage-specific metabolic vulnerabilities. We show that a VHL loss-dependent reprogramming of branched-chain amino acid catabolism sustains the de novo biosynthesis of aspartate and arginine enabling tumor cells with the flexibility of partitioning the nitrogen of the amino acids depending on their needs. Importantly, we identify the epigenetic reactivation of argininosuccinate synthase (ASS1), a urea cycle enzyme suppressed in primary ccRCC, as a crucial event for metastatic renal cancer cells to acquire the capability to generate arginine, invade in vitro and metastasize in vivo. Overall, our study uncovers a mechanism of metabolic flexibility occurring during ccRCC progression, paving the way for the development of novel stage-specific therapies.Peer reviewe

    Dynamic partitioning of branched-chain amino acids-derived nitrogen supports renal cancer progression.

    Get PDF
    Metabolic reprogramming is critical for tumor initiation and progression. However, the exact impact of specific metabolic changes on cancer progression is poorly understood. Here, we integrate multimodal analyses of primary and metastatic clonally-related clear cell renal cancer cells (ccRCC) grown in physiological media to identify key stage-specific metabolic vulnerabilities. We show that a VHL loss-dependent reprogramming of branched-chain amino acid catabolism sustains the de novo biosynthesis of aspartate and arginine enabling tumor cells with the flexibility of partitioning the nitrogen of the amino acids depending on their needs. Importantly, we identify the epigenetic reactivation of argininosuccinate synthase (ASS1), a urea cycle enzyme suppressed in primary ccRCC, as a crucial event for metastatic renal cancer cells to acquire the capability to generate arginine, invade in vitro and metastasize in vivo. Overall, our study uncovers a mechanism of metabolic flexibility occurring during ccRCC progression, paving the way for the development of novel stage-specific therapies

    Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target.

    Get PDF
    BACKGROUND: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. METHODS: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ(2) tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. RESULTS: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. CONCLUSIONS: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa.This work was supported by a Cancer Research UK program grant (to DEN) and also by the US Department of Defense (Prostate Cancer Research Program Transformative Impact Award, grant ID W81XWH-13-2-0093; WDT and SMD), PCFA/Cancer Australia/Movember (grant IDs 1012337 and 1043482; WDT and LAS), Cancer Australia (grant ID 1043497; WDT and JC) and The Ray and Shirl Norman Cancer Research Trust (WDT and LAS). The Dame Roma Mitchell Cancer Research Laboratories were supported by an establishment grant from the PCFA (ID 2011/0452). FO was supported by a PhD project grant from Prostate Cancer UK (S10-10). LAS is supported by a Young Investigator Award from the Prostate Cancer Foundation (the Foundation 14 award)

    Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer

    Get PDF
    Emerging data demonstrate homologous recombination (HR) defects in castration-resistant prostate cancers, rendering these tumours sensitive to PARP inhibition. Here we demonstrate a direct requirement for the androgen receptor (AR) to maintain HR gene expression and HR activity in prostate cancer. We show that PARP-mediated repair pathways are upregulated in prostate cancer following androgen-deprivation therapy (ADT). Furthermore, upregulation of PARP activity is essential for the survival of prostate cancer cells and we demonstrate a synthetic lethality between ADT and PARP inhibition in vivo. Our data suggest that ADT can functionally impair HR prior to the development of castration resistance and that, this potentially could be exploited therapeutically using PARP inhibitors in combination with androgen-deprivation therapy upfront in advanced or high-risk prostate cancer.Tumours with homologous recombination (HR) defects become sensitive to PARPi. Here, the authors show that androgen receptor (AR) regulates HR and AR inhibition activates the PARP pathway in vivo, thus inhibition of both AR and PARP is required for effective treatment of high risk prostate cancer.</p

    Dynamic partitioning of branched-chain amino acids-derived nitrogen supports renal cancer progression

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Metabolic reprogramming is critical for tumor initiation and progression. However, the exact impact of specific metabolic changes on cancer progression is poorly understood. Here, we integrate multimodal analyses of primary and metastatic clonally-related clear cell renal cancer cells (ccRCC) grown in physiological media to identify key stage-specific metabolic vulnerabilities. We show that a VHL loss-dependent reprogramming of branched-chain amino acid catabolism sustains the de novo biosynthesis of aspartate and arginine enabling tumor cells with the flexibility of partitioning the nitrogen of the amino acids depending on their needs. Importantly, we identify the epigenetic reactivation of argininosuccinate synthase (ASS1), a urea cycle enzyme suppressed in primary ccRCC, as a crucial event for metastatic renal cancer cells to acquire the capability to generate arginine, invade in vitro and metastasize in vivo. Overall, our study uncovers a mechanism of metabolic flexibility occurring during ccRCC progression, paving the way for the development of novel stage-specific therapies.Peer reviewe

    A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer.

    Get PDF
    Elucidation of mechanisms underlying the increased androgen receptor (AR) activity and subsequent development of aggressive prostate cancer (PrCa) is pivotal in developing new therapies. Using a systems biology approach, we interrogated the AR-regulated proteome and identified PDZ binding kinase (PBK) as a novel AR-regulated protein that regulates full-length AR and AR variants (ARVs) activity in PrCa. PBK overexpression in aggressive PrCa is associated with early biochemical relapse and poor clinical outcome. In addition to its carboxy terminus ligand-binding domain, PBK directly interacts with the amino terminus transactivation domain of the AR to stabilise it thereby leading to increased AR protein expression observed in PrCa. Transcriptome sequencing revealed that PBK is a mediator of global AR signalling with key roles in regulating tumour invasion and metastasis. PBK inhibition decreased growth of PrCa cell lines and clinical specimen cultured ex vivo. We uncovered a novel interplay between AR and PBK that results in increased AR and ARVs expression that executes AR-mediated growth and progression of PrCa, with implications for the development of PBK inhibitors for the treatment of aggressive PrCa

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore