143 research outputs found

    Electrospun PEDOT:PSS/PVP Nanofibers for CO Gas Sensing with Quartz Crystal Microbalance Technique

    Get PDF
    Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/polyvinylpyrrolidone (PEDOT:PSS/PVP) composite nanofibers were successfully fabricated via electrospinning and used as a quartz crystal microbalance (QCM) sensor for detecting CO gas. The electrical property of individual PEDOT:PSS/PVP nanofibers was characterized and the room temperature resistivity was at the magnitude of 105 Ω·m. The QCM sensor based on PEDOT:PSS/PVP nanofibers was sensitive to low concentration (5–50 ppm) CO. In the range of 5–50 ppm CO, the relationship between the response of PEDOT:PSS nanofibers and the CO concentration was linear. Nevertheless, when the concentration exceeded 50 ppm, the adsorption of the nanofiber membrane for CO gas reached saturation and the resonant frequency range had no change. Therefore, the results open an approach to create electrospun PEDOT:PSS/PVP for gas sensing applications

    Epidemiology of autism spectrum disorders: Global burden of disease 2019 and bibliometric analysis of risk factors

    Get PDF
    BackgroundTo explore the geographical pattern and temporal trend of autism spectrum disorders (ASD) epidemiology from 1990 to 2019, and perform a bibliometric analysis of risk factors for ASD.MethodsIn this study, ASD epidemiology was estimated with prevalence, incidence, and disability-adjusted life-years (DALYs) of 204 countries and territories by sex, location, and sociodemographic index (SDI). Age-standardized rate (ASR) and estimated annual percentage change (EAPC) were used to quantify ASD temporal trends. Besides, the study performed a bibliometric analysis of ASD risk factors since 1990. Publications published were downloaded from the Web of Science Core Collection database, and were analyzed using CiteSpace.ResultsGlobally, there were estimated 28.3 million ASD prevalent cases (ASR, 369.4 per 100,000 populations), 603,790 incident cases (ASR, 9.3 per 100,000 populations) and 4.3 million DALYs (ASR, 56.3 per 100,000 populations) in 2019. Increases of autism spectrum disorders were noted in prevalent cases (39.3%), incidence (0.1%), and DALYs (38.7%) from 1990 to 2019. Age-standardized rates and EAPC showed stable trend worldwide over time. A total of 3,991 articles were retrieved from Web of Science, of which 3,590 were obtained for analysis after removing duplicate literatures. “Rehabilitation”, “Genetics & Heredity”, “Nanoscience & Nanotechnology”, “Biochemistry & Molecular biology”, “Psychology”, “Neurosciences”, and “Environmental Sciences” were the hotspots and frontier disciplines of ASD risk factors.ConclusionsDisease burden and risk factors of autism spectrum disorders remain global public health challenge since 1990 according to the GBD epidemiological estimates and bibliometric analysis. The findings help policy makers formulate public health policies concerning prevention targeted for risk factors, early diagnosis and life-long healthcare service of ASD. Increasing knowledge concerning the public awareness of risk factors is also warranted to address global ASD problem

    Novel loci and pathways significantly associated with longevity

    Get PDF
    Only two genome-wide significant loci associated with longevity have been identified so far, probably because of insufficient sample sizes of centenarians, whose genomes may harbor genetic variants associated with health and longevity. Here we report a genome-wide association study (GWAS) of Han Chinese with a sample size 2.7 times the largest previously published GWAS on centenarians. We identified 11 independent loci associated with longevity replicated in Southern-Northern regions of China, including two novel loci (rs2069837-IL6; rs2440012-ANKRD20A9P) with genome-wide significance and the rest with suggestive significance (P < 3.65 × 10(−5)). Eight independent SNPs overlapped across Han Chinese, European and U.S. populations, and APOE and 5q33.3 were replicated as longevity loci. Integrated analysis indicates four pathways (starch, sucrose and xenobiotic metabolism; immune response and inflammation; MAPK; calcium signaling) highly associated with longevity (P ≀ 0.006) in Han Chinese. The association with longevity of three of these four pathways (MAPK; immunity; calcium signaling) is supported by findings in other human cohorts. Our novel finding on the association of starch, sucrose and xenobiotic metabolism pathway with longevity is consistent with the previous results from Drosophilia. This study suggests protective mechanisms including immunity and nutrient metabolism and their interactions with environmental stress play key roles in human longevity

    Corrigendum to: The TianQin project: current progress on science and technology

    Get PDF
    In the originally published version, this manuscript included an error related to indicating the corresponding author within the author list. This has now been corrected online to reflect the fact that author Jun Luo is the corresponding author of the article

    Modelling of redox flow battery electrode processes at a range of length scales : a review

    Get PDF
    In this article, the different approaches reported in the literature for modelling electrode processes in redox flow batteries (RFBs) are reviewed. RFB models vary widely in terms of computational complexity, research scalability and accuracy of predictions. Development of RFB models have been quite slow in the past, but in recent years researchers have reported on a range of modelling approaches for RFB system optimisation. Flow and transport processes, and their influence on electron transfer kinetics, play an important role in the performance of RFBs. Macro-scale modelling, typically based on a continuum approach for porous electrode modelling, have been used to investigate current distribution, to optimise cell design and to support techno-economic analyses. Microscale models have also been developed to investigate the transport properties within porous electrode materials. These microscale models exploit experimental tomographic techniques to characterise three-dimensional structures of different electrode materials. New insights into the effect of the electrode structure on transport processes are being provided from these new approaches. Modelling flow, transport, electrical and electrochemical processes within the electrode structure is a developing area of research, and there are significant variations in the model requirements for different redox systems, in particular for multiphase chemistries (gas–liquid, solid–liquid, etc.) and for aqueous and non-aqueous solvents. Further development is essential to better understand the kinetic and mass transport phenomena in the porous electrodes, and multiscale approaches are also needed to enable optimisation across the relevent length scales

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • 

    corecore