7 research outputs found

    Mecanismos de resistencia primaria y adquirida a trastuzumab en cĂĄncer de mama HER2 positivo

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología. Fecha de lectura: 05-07-2017Esta tesis tiene embargado el acceso al texto completo hasta el 05-01-201

    Nuclear DICKKOPF-1 as a biomarker of chemoresistance and poor clinical outcome in colorectal cancer

    Get PDF
    Sporadic colorectal cancer (CRC) insurgence and progression depend on the activation of Wnt/ÎČ-catenin signaling. Dickkopf (DKK)-1 is an extracellular inhibitor of Wnt/ÎČ-catenin signaling that also has undefined ÎČ-catenin-independent actions. Here we report for the first time that a proportion of DKK-1 locates within the nucleus of healthy small intestine and colon mucosa, and of CRC cells at specific chromatin sites of active transcription. Moreover, we show that DKK-1 regulates several cancer-related genes including the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) and Ral-binding protein 1-associated Eps domain-containing 2 (REPS2), which are involved in detoxification of chemotherapeutic agents. Nuclear DKK-1 expression is lost along CRC progression; however, it remains high in a subset (15%) of CRC patients (n = 699) and associates with decreased progression-free survival (PFS) after chemotherapy administration and overall survival (OS) [adjusted HR, 1.65; 95% confidence interval (CI), 1.23-2.21; P = 0.002)]. Overexpression of ALDH1A1 and REPS2 associates with nuclear DKK-1 expression in tumors and correlates with decreased OS (P = 0.001 and 0.014) and PFS. In summary, our findings demonstrate a novel location of DKK-1 within the cell nucleus and support a role of nuclear DKK-1 as a predictive biomarker of chemoresistance in colorectal cancer

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    mTOR inhibition and T-DM1 in HER2-positive breast cancer

    Get PDF
    In patients with trastuzumab-resistant HER2-positive breast cancer, the combination of everolimus (mTORC1 inhibitor) with trastuzumab failed to show a clinically significant benefit. However, the combination of mTOR inhibition and the antibody-drug conjugate (ADC) trastuzumab-emtansine (T-DM1) remains unexplored. We tested T-DM1 plus everolimus in a broad panel of HER2-positive breast cancer cell lines. The combination was superior to T-DM1 alone in four cell lines (HCC1954, SKBR3, EFM192A, and MDA-MB-36) and in two cultures from primary tumor cells derived from HER2-positive patient-derived xenografts (PDX), but not in BT474 cells. In the trastuzumab-resistant HCC1954 cell line, we characterized the effects of the combination using TAK-228 (mTORC1 and -2 inhibitor) and knockdown of the different mTOR complex components. T-DM1 did not affect mTOR downstream signaling nor induct autophagy. Importantly, mTOR inhibition increased intracellular T-DM1 levels, leading to increased lysosomal accumulation of the compound. The increased efficacy of mTOR inhibition plus T-DM1 was abrogated by lysosome inhibitors (chloroquine and bafilomycin A1). Our experiments suggest that BT474 are less sensitive to T-DM1 due to lack of optimal lysosomal processing and intrinsic resistance to the DM1 moiety. Finally, we performed several in vivo experiments that corroborated the superior activity of T-DM1 and everolimus in HCC1954 and PDX-derived mouse models. In summary, everolimus in combination with T-DM1 showed strong antitumor effects in HER2-positive breast cancer, both in vitro and in vivo. This effect might be related, at least partially, to mTOR-dependent lysosomal processing of T-DM1, a finding that might apply to other ADCs that require lysosomal processing.This work was supported by ISCIII (CIBERONC CB16/12/00481, CB16/12/00241, PI18/00382, PI18/00006, PI18/01219), Generalitat de Catalunya (2017 SGR 507). MINECO through gBFU2015-71371-R grant and the CRIS Cancer Foundation supported work in AP lab. D. Casadevall was supported by ISCIII (Rio Hortega Research Contract CM16/00023 and Juan Rodés Research Contract JR18/00003). F.J. Sånchez-Martín and S. Menéndez were supported by Department de Salut Generalitat de Catalunya (PERIS SLT002/16/00008 and PERIS SLT006/17/00040). M. Qin received financial support from the China Scholarship Council (CSC) for her doctoral fellowship. Work carried out in our laboratories receives support from the European Community through the Regional Development Funding Program (FEDER)

    reseña del libro Paremias e indumentaria en Refranes y Proverbios en Romance (1555) de HernĂĄn NĂșñez. AnĂĄlisis paremiolĂłgico, etnolingĂŒĂ­stico y lingĂŒĂ­stico

    No full text

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore