677 research outputs found

    Graduate Recital: Ryan Zawel, trombone

    Get PDF

    A study of certain accommodative findings under constant illumination with two different wavelengths of light

    Get PDF
    A study of certain accommodative findings under constant illumination with two different wavelengths of ligh

    Evidence of mTOR Activation by an AKT-Independent Mechanism Provides Support for the Combined Treatment of PTEN-Deficient Prostate Tumors with mTOR and AKT Inhibitors

    Get PDF
    AbstractActivation of the phosphoinositide 3-kinase pathway is commonly observed in human prostate cancer. Loss of function of phosphatase and tensin homolog (PTEN) is associated with the activation of AKT and mammalian target of rapamycin (mTOR) in many cancer cell lines as well as in other model systems. However, activation of mTOR is also dependent of kinases other than AKT. Here, we show that activation of mTOR is not dependent on AKT in a prostate-specific PTEN-deficient mouse model of prostate cancer. Pathway bifurcation of AKT and mTOR was noted in both mouse and human prostate tumors. We demonstrated for the first time that cotargeting mTOR and AKT with ridaforolimus/MK-8669 and M1K-2206, respectively, delivers additive antitumor effects in vivo when compared to single agents. Our preclinical data suggest that the combination of AKT and mTOR inhibitors might be more effective in treating prostate cancer patients than current treatment regimens or either treatment alone

    Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation

    Get PDF
    Intrinsically disordered proteins/regions (IDPs/IDRs) are proteins or peptide segments that fail to form stable 3-dimensional structures in the absence of partner proteins. They are abundant in eukaryotic proteomes and are often associated with human diseases, but their biological functions have been elusive to study. In this study, we report the identification of a tin(IV) oxochloride-derived cluster that binds an evolutionarily conserved IDR within the metazoan TFIID transcription complex. Binding arrests an isomerization of promoter-bound TFIID that is required for the engagement of Pol II during the first (de novo) round of transcription initiation. However, the specific chemical probe does not affect reinitiation, which requires the re-entry of Pol II, thus, mechanistically distinguishing these two modes of transcription initiation. This work also suggests a new avenue for targeting the elusive IDRs by harnessing certain features of metal-based complexes for mechanistic studies, and for the development of novel pharmaceutical interventions.National Cancer Institute (U.S.). Initiative for Chemical Genetics (Contract N01-CO-12400)National Cancer Institute (U.S.). Cancer Target Discovery and Development Network (R01 CA160860

    TFIIH: a key component in multiple DNA transactions

    Get PDF
    The transcription factor TFIIH is a versatile, multi-functional protein complex with multiple engagements. Apart from its role in basal transcription, TFIIH is intimately implicated in DNA repair and (probably) in cell cycle control (both of which are required to prevent carcinogenesis) as well as having possible roles in other processes. Thus, it is a striking example of the efficient use of one component for many purposes. Ingeniously, the incorporation of this essential factor into important, but non-essential, mechanisms, such as DNA repair, protects against cancer. The critical role of TFIIH in transcription function renders inactivating TFIIH mutations lethal to cells. Without this transcription connection, such mutations would lead to genetic instability and oncogenesis

    Structural basis for the cooperative DNA recognition by Smad4 MH1 dimers

    Get PDF
    Smad proteins form multimeric complexes consisting of the ‘common partner’ Smad4 and receptor regulated R-Smads on clustered DNA binding sites. Deciphering how pathway specific Smad complexes multimerize on DNA to regulate gene expression is critical for a better understanding of the cis-regulatory logic of TGF-β and BMP signaling. To this end, we solved the crystal structure of the dimeric Smad4 MH1 domain bound to a palindromic Smad binding element. Surprisingly, the Smad4 MH1 forms a constitutive dimer on the SBE DNA without exhibiting any direct protein–protein interactions suggesting a DNA mediated indirect readout mechanism. However, the R-Smads Smad1, Smad2 and Smad3 homodimerize with substantially decreased efficiency despite pronounced structural similarities to Smad4. Therefore, intricate variations in the DNA structure induced by different Smads and/or variant energetic profiles likely contribute to their propensity to dimerize on DNA. Indeed, competitive binding assays revealed that the Smad4/R-Smad heterodimers predominate under equilibrium conditions while R-Smad homodimers are least favored. Together, we present the structural basis for DNA recognition by Smad4 and demonstrate that Smad4 constitutively homo- and heterodimerizes on DNA in contrast to its R-Smad partner proteins by a mechanism independent of direct protein contacts
    corecore