1,156 research outputs found

    Simulated Dark-Matter Halos as a Test of Nonextensive Statistical Mechanics

    Full text link
    In the framework of nonextensive statistical mechanics, the equilibrium structures of astrophysical self-gravitating systems are stellar polytropes, parameterized by the polytropic index n. By careful comparison to the structures of simulated dark-matter halos we find that the density profiles, as well as other fundamental properties, of stellar polytropes are inconsistent with simulations for any value of n. This result suggests the need to reconsider the applicability of nonextensive statistical mechanics (in its simplest form) to equilibrium self-gravitating systems.Comment: Accepted for publication in Physical Review

    Multitechnique testing of the viscous decretion disk model I. The stable and tenuous disk of the late-type Be star β\beta CMi

    Full text link
    The viscous decretion disk (VDD) model is able to explain most of the currently observable properties of the circumstellar disks of Be stars. However, more stringent tests, focusing on reproducing multitechnique observations of individual targets via physical modeling, are needed to study the predictions of the VDD model under specific circumstances. In the case of nearby, bright Be star β\beta CMi, these circumstances are a very stable low-density disk and a late-type (B8Ve) central star. The aim is to test the VDD model thoroughly, exploiting the full diagnostic potential of individual types of observations, in particular, to constrain the poorly known structure of the outer disk if possible, and to test truncation effects caused by a possible binary companion using radio observations. We use the Monte Carlo radiative transfer code HDUST to produce model observables, which we compare with a very large set of multitechnique and multiwavelength observations that include ultraviolet and optical spectra, photometry covering the interval between optical and radio wavelengths, optical polarimetry, and optical and near-IR (spectro)interferometry. Due to the absence of large scale variability, data from different epochs can be combined into a single dataset. A parametric VDD model with radial density exponent of nn = 3.5, which is the canonical value for isothermal flaring disks, is found to explain observables typically formed in the inner disk, while observables originating in the more extended parts favor a shallower, nn = 3.0, density falloff. Modeling of radio observations allowed for the first determination of the physical extent of a Be disk (355+10^{+10}_{-5} stellar radii), which might be caused by a binary companion. Finally, polarization data allowed for an indirect measurement of the rotation rate of the star, which was found to be W0.98W \gtrsim 0.98, i.e., very close to critical.Comment: 19 pages (35 including online material), 17 figures, 2 online figures, 2 online tables with dat

    The HgMn Binary Star Phi Herculis: Detection and Properties of the Secondary and Revision of the Elemental Abundances of the Primary

    Get PDF
    Observations of the Mercury-Manganese star Phi Herculis with the Navy Prototype Optical Interferometer (NPOI) conclusively reveal the previously unseen companion in this single-lined binary system. The NPOI data were used to predict a spectral type of A8V for the secondary star Phi Her B. This prediction was subsequently confirmed by spectroscopic observations obtained at the Dominion Astrophysical Observatory. Phi Her B is rotating at 50 +/-3 km/sec, in contrast to the 8 km/sec lines of Phi Her A. Recognizing the lines from the secondary permits one to separate them from those of the primary. The abundance analysis of Phi Her A shows an abundance pattern similar to those of other HgMn stars with Al being very underabundant and Sc, Cr, Mn, Zn, Ga, Sr, Y, Zr, Ba, Ce, and Hg being very overabundant.Comment: Accepted to ApJ, 45 pages, 11 figure

    Understanding the Geometry of Astrophysical Magnetic Fields

    Full text link
    Faraday rotation measurements have provided an invaluable technique with which to measure the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13 (RM/rad m^-2)^(1/4) (B/G)^(1/2) MHz, the character of Faraday rotation changes, entering what we term the ``super-adiabatic regime'' in which the rotation measure is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing rotation measures at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, nu_SA, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of nu_SA range from 10 kHz to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved AGN, including the black holes at the center of the Milky Way (Sgr A*) and M81, nu_SA ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.Comment: 13 pages, 5 figures, submitted to Ap

    Performance of Sensitivity based NMPC Updates in Automotive Applications

    Full text link
    In this work we consider a half car model which is subject to unknown but measurable disturbances. To control this system, we impose a combination of model predictive control without stabilizing terminal constraints or cost to generate a nominal solution and sensitivity updates to handle the disturbances. For this approach, stability of the resulting closed loop can be guaranteed using a relaxed Lyapunov argument on the nominal system and Lipschitz conditions on the open loop change of the optimal value function and the stage costs. For the considered example, the proposed approach is realtime applicable and corresponding results show significant performance improvements of the updated solution with respect to comfort and handling properties.Comment: 6 pages, 2 figure

    Optics-less smart sensors and a possible mechanism of cutaneous vision in nature

    Full text link
    Optics-less cutaneous (skin) vision is not rare among living organisms, though its mechanisms and capabilities have not been thoroughly investigated. This paper demonstrates, using methods from statistical parameter estimation theory and numerical simulations, that an array of bare sensors with a natural cosine-law angular sensitivity arranged on a flat or curved surface has the ability to perform imaging tasks without any optics at all. The working principle of this type of optics-less sensor and the model developed here for determining sensor performance may be used to shed light upon possible mechanisms and capabilities of cutaneous vision in nature

    Probing the central black hole in M87 with gamma-rays

    Full text link
    Recent high-sensitivity observation of the nearby radio galaxy M87 have provided important insights into the central engine that drives the large-scale outflows seen in radio, optical and X-rays. This review summarizes the observational status achieved in the high energy (HE;<100 GeV) and very high energy (VHE; >100 GeV) gamma-ray domains, and discusses the theoretical progress in understanding the physical origin of this emission and its relation to the activity of the central black hole.Comment: Invited compact review to be published in Modern Physics Letters A; 19 pages, 4 figure

    Avian oncogenesis induced by lymphoproliferative disease virus: a neglected or emerging retroviral pathogen?

    Get PDF
    Lymphoproliferative disease virus (LPDV) is an exogenous oncogenic retrovirus that induces lymphoid tumors in some galliform species of birds. Historically, outbreaks of LPDV have been reported from Europe and Israel. Although the virus has previously never been detected in North America, herein we describe the widespread distribution, genetic diversity, pathogenesis, and evolution of LPDV in the United States. Characterization of the provirus genome of the index LPDV case from North America demonstrated an 88% nucleotide identity to the Israeli prototype strain. Although phylogenetic analysis indicated that the majority of viruses fell into a single North American lineage, a small subset of viruses from South Carolina were most closely related to the Israeli prototype. These results suggest that LPDV was transferred between continents to initiate outbreaks of disease. However, the direction (New World to Old World or vice versa), mechanism, and time frame of the transcontinental spread currently remain unknown
    corecore