The viscous decretion disk (VDD) model is able to explain most of the
currently observable properties of the circumstellar disks of Be stars.
However, more stringent tests, focusing on reproducing multitechnique
observations of individual targets via physical modeling, are needed to study
the predictions of the VDD model under specific circumstances. In the case of
nearby, bright Be star β CMi, these circumstances are a very stable
low-density disk and a late-type (B8Ve) central star. The aim is to test the
VDD model thoroughly, exploiting the full diagnostic potential of individual
types of observations, in particular, to constrain the poorly known structure
of the outer disk if possible, and to test truncation effects caused by a
possible binary companion using radio observations. We use the Monte Carlo
radiative transfer code HDUST to produce model observables, which we compare
with a very large set of multitechnique and multiwavelength observations that
include ultraviolet and optical spectra, photometry covering the interval
between optical and radio wavelengths, optical polarimetry, and optical and
near-IR (spectro)interferometry. Due to the absence of large scale variability,
data from different epochs can be combined into a single dataset. A parametric
VDD model with radial density exponent of n = 3.5, which is the canonical
value for isothermal flaring disks, is found to explain observables typically
formed in the inner disk, while observables originating in the more extended
parts favor a shallower, n = 3.0, density falloff. Modeling of radio
observations allowed for the first determination of the physical extent of a Be
disk (35−5+10 stellar radii), which might be caused by a binary
companion. Finally, polarization data allowed for an indirect measurement of
the rotation rate of the star, which was found to be W≳0.98, i.e.,
very close to critical.Comment: 19 pages (35 including online material), 17 figures, 2 online
figures, 2 online tables with dat