13 research outputs found

    Tutorial: Multivariate Classification for Vibrational Spectroscopy in Biological Samples

    Get PDF
    Vibrational spectroscopy techniques, such as Fourier-transform infrared (FTIR) and Raman spectroscopy, have been successful methods for studying the interaction of light with biological materials and facilitating novel cell biology analysis. Spectrochemical analysis is very attractive in disease screening and diagnosis, microbiological studies and forensic and environmental investigations because of its low cost, minimal sample preparation, non-destructive nature and substantially accurate results. However, there is now an urgent need for multivariate classification protocols allowing one to analyze biologically derived spectrochemical data to obtain accurate and reliable results. Multivariate classification comprises discriminant analysis and class-modeling techniques where multiple spectral variables are analyzed in conjunction to distinguish and assign unknown samples to pre-defined groups. The requirement for such protocols is demonstrated by the fact that applications of deep-learning algorithms of complex datasets are being increasingly recognized as critical for extracting important information and visualizing it in a readily interpretable form. Hereby, we have provided a tutorial for multivariate classification analysis of vibrational spectroscopy data (FTIR, Raman and near-IR) highlighting a series of critical steps, such as preprocessing, data selection, feature extraction, classification and model validation. This is an essential aspect toward the construction of a practical spectrochemical analysis model for biological analysis in real-world applications, where fast, accurate and reliable classification models are fundamental

    Comparison of traits of non-colonized and colonized decaying logs by vascular plant species

    No full text
    The main goal of this study was to check whether the process of the colonization of coarse woody debris (CWD) is random or is determined by the wood traits and the environment. The study was conducted in the Karkonosze Mts., a part of Sudeten Mts. (Poland). We recorded the CWD traits and site conditions for 453 logs of spruce (Picea abies) and beech (Fagus sylvatica), which were either colonized or not colonized by vascular plants. Principal Components Analysis (PCA), a statistical comparison of two categories of logs using the Wilcoxon’s sum rank test and Generalized Linear Model (GLM) were applied. P. abies logs were colonized significantly more frequently than F. sylvatica logs. PCA demonstrated that the groups of colonized and non-colonized logs significantly differed overall in both species. The colonization status of a given log was significantly associated with CWD traits and site conditions. Decomposition class, the log diameter and the cover of bryophytes in F. sylvatica and P. abies, as well as altitude in the latter species, were significant factors that increased the probability of dead wood colonization by vascular plants. The results supported the hypothesis that vascular plants do not colonize all of the available logs and that the process of establishment is not random

    Comparison of traits of non-colonized and colonized decaying logs by vascular plant species

    No full text

    CESTES - a global database for metaCommunity Ecology: Species, Traits, Environment and Space

    No full text
    Item does not contain fulltextCESTES is a global live database for metaCommunity Ecology: Species, Traits, Environment and Space. It compiles 80 datasets from trait-based studies. Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. CESTES presents a harmonized structure and covers a diversity of ecosystem types (marine, terrestrial, freshwater), taxonomic groups (plants, vertebrates, invertebrates...), geographical regions, and spatial scales.nul

    A miniature world in decline: European Red List of Mosses, Liverworts and Hornworts

    No full text
    This publication has been prepared by IUCN (International Union for Conservation of Nature) as a deliverable of the LIFE European Red Lists project (LIFE14 PRE BE 001). A miniature world in decline: The European Red List of Mosses, Liverworts and Hornworts is, therefore, a part of a series of publications released since 2015, when the project began, that also include: ‱ European Red List of Lycopods and Ferns, 2017 ‱ European Red List of Saproxylic Beetles, 2018 ‱ European Red list of Terrestrial Molluscs: slugs, snails, and semi-slugs, 2019 ‱ European Red list of Trees, 2019 ‱ European Red list of Selected Endemic Shrubs, 2019 Based on other European Red List assessments, 59% of freshwater molluscs, 40% of freshwater fishes, 28% of grasshoppers, crickets and bush-crickets, 23% of amphibians, 20% of reptiles, 20% of ferns and lycopods, 17% of mammals, 16% of dragonflies, 13% of birds, 9% of butterflies and bees, 8% of aquatic plants and 2% of medicinal plants are threatened at the European level (Allen et al., 2014; IUCN, 2015; Hochkirch et al., 2016; García Criado et al., 2017). Additional European Red Lists assessing a selection of species showed that 22% of terrestrial molluscs, 16% of crop wild relatives and 18% of saproxylic beetles are also threatened (Cuttelod et al., 2011; Bilz et al., 2011; Cálix et al., 2018). The findings of this work suggest that 23% of bryophytes are threatened species in Europe, representing the fifth most threatened group of plants assessed so far
    corecore