25 research outputs found

    On Propagation of Excitation Waves in Moving Media: The FitzHugh-Nagumo Model

    Get PDF
    BACKGROUND: Existence of flows and convection is an essential and integral feature of many excitable media with wave propagation modes, such as blood coagulation or bioreactors. METHODS/RESULTS: Here, propagation of two-dimensional waves is studied in parabolic channel flow of excitable medium of the FitzHugh-Nagumo type. Even if the stream velocity is hundreds of times higher that the wave velocity in motionless medium (), steady propagation of an excitation wave is eventually established. At high stream velocities, the wave does not span the channel from wall to wall, forming isolated excited regions, which we called "restrictons". They are especially easy to observe when the model parameters are close to critical ones, at which waves disappear in still medium. In the subcritical region of parameters, a sufficiently fast stream can result in the survival of excitation moving, as a rule, in the form of "restrictons". For downstream excitation waves, the axial portion of the channel is the most important one in determining their behavior. For upstream waves, the most important region of the channel is the near-wall boundary layers. The roles of transversal diffusion, and of approximate similarity with respect to stream velocity are discussed. CONCLUSIONS: These findings clarify mechanisms of wave propagation and survival in flow

    An Allosteric Mechanism for Switching between Parallel Tracks in Mammalian Sulfur Metabolism

    Get PDF
    Methionine (Met) is an essential amino acid that is needed for the synthesis of S-adenosylmethionine (AdoMet), the major biological methylating agent. Methionine used for AdoMet synthesis can be replenished via remethylation of homocysteine. Alternatively, homocysteine can be converted to cysteine via the transsulfuration pathway. Aberrations in methionine metabolism are associated with a number of complex diseases, including cancer, anemia, and neurodegenerative diseases. The concentration of methionine in blood and in organs is tightly regulated. Liver plays a key role in buffering blood methionine levels, and an interesting feature of its metabolism is that parallel tracks exist for the synthesis and utilization of AdoMet. To elucidate the molecular mechanism that controls metabolic fluxes in liver methionine metabolism, we have studied the dependencies of AdoMet concentration and methionine consumption rate on methionine concentration in native murine hepatocytes at physiologically relevant concentrations (40–400 µM). We find that both [AdoMet] and methionine consumption rates do not change gradually with an increase in [Met] but rise sharply (∼10-fold) in the narrow Met interval from 50 to 100 µM. Analysis of our experimental data using a mathematical model reveals that the sharp increase in [AdoMet] and the methionine consumption rate observed within the trigger zone are associated with metabolic switching from methionine conservation to disposal, regulated allosterically by switching between parallel pathways. This regulatory switch is triggered by [Met] and provides a mechanism for stabilization of methionine levels in blood over wide variations in dietary methionine intake

    Shear flows of a new class of power-law fluids

    No full text
    We consider the flow of a class of incompressible fluids which are constitutively defined by the symmetric part of the velocity gradient being a function, which can be nonmonotone, of the deviator of the stress tensor. These models are generalizations of the stress power-law models introduced and studied by J. Málek, V. Pr°uša, K.R. Rajagopal : Generalizations of the Navier-Stokes fluid from a new perspective. Int. J. Eng. Sci. 48 (2010), 1907–1924. We discuss a potential application of the new models and then consider some simple boundary-value problems, namely steady planar Couette and Poiseuille flows with no-slip and slip boundary conditions. We show that these problems can have more than one solution and that the multiplicity of the solutions depends on the values of the model parameters as well as the choice of boundary conditions.K.R. Rajagopal thanks the National Science Foundationhttp://link.springer.com/journal/10492hb201

    Pattern formation by vascular mesenchymal cells

    Get PDF
    In embryogenesis, immature mesenchymal cells aggregate and organize into patterned tissues. Later in life, a pathological recapitulation of this process takes place in atherosclerotic lesions, when vascular mesenchymal cells organize into trabecular bone tissue within the artery wall. Here we show that multipotential adult vascular mesenchymal cells self-organize in vitro into patterns that are predicted by a mathematical model based on molecular morphogens interacting in a reaction-diffusion process. We identify activator and inhibitor morphogens for stripe, spot, and labyrinthine patterns and confirm the model predictions in vitro. Thus, reaction-diffusion principles may play a significant role in morphogenetic processes in adult mesenchymal cells
    corecore