48 research outputs found
Mental health in UK Biobank: development, implementation and results from an online questionnaire completed by 157 366 participants
Background
UK Biobank is a well-characterised cohort of over 500 000 participants that offers unique opportunities to investigate multiple diseases and risk factors.
Aims
An online mental health questionnaire completed by UK Biobank participants was expected to expand the potential for research into mental disorders.
Method
An expert working group designed the questionnaire, using established measures where possible, and consulting with a patient group regarding acceptability. Case definitions were defined using operational criteria for lifetime depression, mania, anxiety disorder, psychotic-like experiences and self-harm, as well as current post-traumatic stress and alcohol use disorders.
Results
157 366 completed online questionnaires were available by August 2017. Comparison of self-reported diagnosed mental disorder with a contemporary study shows a similar prevalence, despite respondents being of higher average socioeconomic status than the general population across a range of indicators. Thirty-five per cent (55 750) of participants had at least one defined syndrome, of which lifetime depression was the most common at 24% (37 434). There was extensive comorbidity among the syndromes. Mental disorders were associated with high neuroticism score, adverse life events and long-term illness; addiction and bipolar affective disorder in particular were associated with measures of deprivation.
Conclusions
The questionnaire represents a very large mental health survey in itself, and the results presented here show high face validity, although caution is needed owing to selection bias. Built into UK Biobank, these data intersect with other health data to offer unparalleled potential for crosscutting biomedical research involving mental health
White matter microstructure associations to amyloid burden in adults with Down syndrome.
INTRODUCTION: Individuals with Down syndrome (DS) are at an increased risk of developing Alzheimer's Disease (AD). One of the early underlying mechanisms in AD pathology is the accumulation of amyloid protein plaques, which are deposited in extracellular gray matter and signify the first stage in the cascade of neurodegenerative events. AD-related neurodegeneration is also evidenced as microstructural changes in white matter. In this work, we explored the correlation of white matter microstructure with amyloid load to assess amyloid-related neurodegeneration in a cohort of adults with DS. METHODS: In this study of 96 adults with DS, the relation of white matter microstructure using diffusion tensor imaging (DTI) and amyloid plaque burden using [11C]PiB PET were examined. The amyloid load (AβL) derived from [11C]PiB was used as a global measure of amyloid burden. AβL and DTI measures were compared using tract-based spatial statistics (TBSS) and corrected for imaging site and chronological age. RESULTS: TBSS of the DTI maps showed widespread age-by-amyloid interaction with both fractional anisotropy (FA) and mean diffusivity (MD). Further, diffuse negative association of FA and positive association of MD with amyloid were observed. DISCUSSION: These findings are consistent with the white matter microstructural changes associated with AD disease progression in late onset AD in non-DS populations
Imagining the highway:Anticipating infrastructural and environmental change in Belize
This article examines the social and political, as well physical, construction of infrastructure, by attending to the implications of a highway yet to be built. In southern Belize, where the development of rural road networks figures strongly in historical narratives of political and environmental change, the recent paving of a major domestic highway has had distinctive implications for livelihoods and land rights among the predominantly Maya population of rural Toledo district. At the time of research, a plan for a new paved highway to the Guatemalan border animated longstanding debates over territoriality, environment and development, even as the details remained elusive. Bringing political ecology into conversation with attention to the perception of sensory environments, and the affective power of anticipation, I argue for extending anthropological conversations about infrastructure to encompass the meanings and consequences of imagined infrastructures for the ways people encounter, experience and enact social and environmental change
How genomics can help biodiversity conservation
The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics
The Homeobox Transcription Factor Barx2 Regulates Plasticity of Young Primary Myofibers
Adult mammalian muscle retains incredible plasticity. Muscle growth and repair involves the activation of undifferentiated myogenic precursors called satellite cells. In some circumstances, it has been proposed that existing myofibers may also cleave and produce a pool of proliferative cells that can re-differentiate into new fibers. Such myofiber dedifferentiation has been observed in the salamander blastema where it may occur in parallel with satellite cell activation. Moreover, ectopic expression of the homeodomain transcription factor Msx1 in differentiated C2C12 myotubes has been shown to induce their dedifferentiation. While it remains unclear whether dedifferentiation and redifferentiaton occurs endogenously in mammalian muscle, there is considerable interest in induced dedifferentiation as a possible regenerative tool.We previously showed that the homeobox protein Barx2 promotes myoblast differentiation. Here we report that ectopic expression of Barx2 in young immature myotubes derived from cell lines and primary mouse myoblasts, caused cleavage of the syncytium and downregulation of differentiation markers. Microinjection of Barx2 cDNA into immature myotubes derived from primary cells led to cleavage and formation of mononucleated cells that were able to proliferate. However, injection of Barx2 cDNA into mature myotubes did not cause cleavage. Barx2 expression in C2C12 myotubes increased the expression of cyclin D1, which may promote cell cycle re-entry. We also observed differential muscle gene regulation by Barx2 at early and late stages of muscle differentiation which may be due to differential recruitment of transcriptional activator or repressor complexes to muscle specific genes by Barx2.We show that Barx2 regulates plasticity of immature myofibers and might act as a molecular switch controlling cell differentiation and proliferation
The era of reference genomes in conservation genomics
Progress in genome sequencing
now enables the large-scale
generation of reference genomes.
Various international initiatives
aim to generate reference genomes
representing global biodiversity.
These genomes provide
unique insights into genomic diversity
and architecture, thereby enabling
comprehensive analyses
of population and functional
genomics, and are expected
to revolutionize conservation
genomics
The era of reference genomes in conservation genomics
Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional
genomics, and are expected to revolutionize conservation genomics
How genomics can help biodiversity conservation
The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.info:eu-repo/semantics/publishedVersio