640 research outputs found

    Investigating whether adverse prenatal and perinatal events are associated with non-clinical psychotic symptoms at age 12 years in the ALSPAC birth cohort

    Get PDF
    Background. Non-clinical psychosis-like symptoms (PLIKS) occur in about 15% of the population. It is not clear whether adverse events during early development alter the risk of developing PLIKS. We aimed to examine whether maternal infection, diabetes or pre-eclampsia during pregnancy, gestational age, perinatal cardiopulmonary resuscitation or 5-min Apgar score were associated with development of psychotic symptoms during early adolescence. Method. A longitudinal study of 6356 12-year-old adolescents who completed a semi-structured interview for psychotic symptoms in the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort. Prenatal and perinatal data were obtained from obstetric records and maternal questionnaires completed during pregnancy. Results. The presence of definite psychotic symptoms was associated with maternal infection during pregnancy [adjusted odds ratio (OR) 1.44, 95% confidence interval (CI) 1.11–1.86, p=0.006], maternal diabetes (adjusted OR 3.43, 95% CI 1.14–10.36, p=0.029), need for resuscitation (adjusted OR 1.50, 95% CI 0.97–2.31, p=0.065) and 5-min Apgar score (adjusted OR per unit decrease 1.30, 95% CI 1.12–1.50, p<0.001). None of these associations were mediated by childhood IQ score. Most associations persisted, but were less strong, when including suspected symptoms as part of the outcome. There was no association between PLIKS and gestational age or pre-eclampsia. Conclusions. Adverse events during early development may lead to an increased risk of developing PLIKS. Although the status of PLIKS in relation to clinical disorders such as schizophrenia is not clear, the similarity between these results and findings reported for schizophrenia indicates that future studies of PLIKS may help us to understand how psychotic experiences and clinical disorders develop throughout the life-course

    Characterization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods

    Get PDF
    We present a hierarchical Bayesian method for atmospheric trace gas inversions. This method is used to estimate emissions of trace gases as well as "hyper-parameters" that characterize the probability density functions (PDFs) of the a priori emissions and model-measurement covariances. By exploring the space of "uncertainties in uncertainties", we show that the hierarchical method results in a more complete estimation of emissions and their uncertainties than traditional Bayesian inversions, which rely heavily on expert judgment. We present an analysis that shows the effect of including hyper-parameters, which are themselves informed by the data, and show that this method can serve to reduce the effect of errors in assumptions made about the a priori emissions and model-measurement uncertainties. We then apply this method to the estimation of sulfur hexafluoride (SF6) emissions over 2012 for the regions surrounding four Advanced Global Atmospheric Gases Experiment (AGAGE) stations. We find that improper accounting of model representation uncertainties, in particular, can lead to the derivation of emissions and associated uncertainties that are unrealistic and show that those derived using the hierarchical method are likely to be more representative of the true uncertainties in the system. We demonstrate through this SF6 case study that this method is less sensitive to outliers in the data and to subjective assumptions about a priori emissions and model-measurement uncertainties than traditional methods

    Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering

    Get PDF
    Summary: Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D) artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. : Maffioletti et al. generate human 3D artificial skeletal muscles from healthy donors and patient-specific pluripotent stem cells. These human artificial muscles accurately model severe genetic muscle diseases. They can be engineered to include other cell types present in skeletal muscle, such as vascular cells and motor neurons. Keywords: skeletal muscle, pluripotent stem cells, iPS cells, myogenic differentiation, tissue engineering, disease modeling, muscular dystrophy, organoid

    TIGIT can inhibit T cell activation via ligation-induced nanoclusters, independent of CD226 co-stimulation

    Get PDF
    TIGIT is an inhibitory receptor expressed on lymphocytes and can inhibit T cells by preventing CD226 co-stimulation through interactions in cis or through competition of shared ligands. Whether TIGIT directly delivers cell-intrinsic inhibitory signals in T cells remains unclear. Here we show, by analysing lymphocytes from matched human tumour and peripheral blood samples, that TIGIT and CD226 co-expression is rare on tumour-infiltrating lymphocytes. Using super-resolution microscopy and other techniques, we demonstrate that ligation with CD155 causes TIGIT to reorganise into dense nanoclusters, which coalesce with T cell receptor (TCR)-rich clusters at immune synapses. Functionally, this reduces cytokine secretion in a manner dependent on TIGIT’s intracellular ITT-like signalling motif. Thus, we provide evidence that TIGIT directly inhibits lymphocyte activation, acting independently of CD226, requiring intracellular signalling that is proximal to the TCR. Within the subset of tumours where TIGIT-expressing cells do not commonly co-express CD226, this will likely be the dominant mechanism of action

    Adult Education in Malta: Challenges and Prospects

    Get PDF
    Lifelong learning has long been a topic of discussion in Malta but, as this article shows, barriers to participation continue to exist. This article outlines the historical and economic changes that have led Malta to its present situation where adult education largely focuses on employment skills. Although available through a variety of channels, challenges still need to be met to ensure the participation of groups such as women, older people and immigrants. This article advocates a national strategy for adult education within which a balance is struck between learning for employment and learning as a public good.peer-reviewe

    Further Characterisation of the Molecular Signature of Quiescent and Activated Mouse Muscle Satellite Cells

    Get PDF
    Satellite cells are the resident stem cells of adult skeletal muscle. To date though, there is a paucity of native markers that can be used to easily identify quiescent satellite cells, with Pax7 probably being the best that is currently available. Here we have further characterized a number of recently described satellite cell markers, and also describe novel ones. Caveolin-1, integrin α7 and the calcitonin receptor proved reliable markers for quiescent satellite cells, being expressed by all satellite cells identified with Pax7. These three markers remained expressed as satellite cells were activated and underwent proliferation. The nuclear envelope proteins lamin A/C and emerin, mutations in which underlie Emery-Dreifuss muscular dystrophy, were also expressed in both quiescent and proliferating satellite cells. Conversely, Jagged-1, a Notch ligand, was not expressed in quiescent satellite cells but was induced upon activation. These findings further contribute to defining the molecular signature of muscle satellite cells

    Cohort profile: the avon longitudinal study of parents and children: ALSPAC mothers cohort

    Get PDF
    The Avon Longitudinal Study of Children and Parents (ALSPAC) was established to understand how genetic and environmental characteristics influence health and development in parents and children. All pregnant women resident in a defined area in the South West of England, with an expected date of delivery between 1st April 1991 and 31st December 1992, were eligible and 13 761 women (contributing 13 867 pregnancies) were recruited. These women have been followed over the last 19–22 years and have completed up to 20 questionnaires, have had detailed data abstracted from their medical records and have information on any cancer diagnoses and deaths through record linkage. A follow-up assessment was completed 17–18 years postnatal at which anthropometry, blood pressure, fat, lean and bone mass and carotid intima media thickness were assessed, and a fasting blood sample taken. The second follow-up clinic, which additionally measures cognitive function, physical capability, physical activity (with accelerometer) and wrist bone architecture, is underway and two further assessments with similar measurements will take place over the next 5 years. There is a detailed biobank that includes DNA, with genome-wide data available on &gt;10 000, stored serum and plasma taken repeatedly since pregnancy and other samples; a wide range of data on completed biospecimen assays are available. Details of how to access these data are provided in this cohort profile

    The SIPHER consortium : introducing the new UK hub for systems science in public health and health economic research

    Get PDF
    The conditions in which we are born, grow, live, work and age are key drivers of health and inequalities in life chances. To maximise health and wellbeing across the whole population, we need well-coordinated action across government sectors, in areas including economic, education, welfare, labour market and housing policy. Current research struggles to offer effective decision support on the cross-sector strategic alignment of policies, and to generate evidence that gives budget holders the confidence to change the way major investment decisions are made. This open letter introduces a new research initiative in this space. The SIPHER (Systems Science in Public Health and Health Economics Research) Consortium brings together a multi-disciplinary group of scientists from across six universities, three government partners at local, regional and national level, and ten practice partner organisations. The Consortium’s vision is a shift from health policy to healthy public policy, where the wellbeing impacts of policies are a core consideration across government sectors. Researchers and policy makers will jointly tackle fundamental questions about: a) the complex causal relationships between upstream policies and wellbeing, economic and equality outcomes; b) the multi-sectoral appraisal of costs and benefits of alternative investment options; c) public values and preferences for different outcomes, and how necessary trade-offs can be negotiated; and d) creating the conditions for intelligence-led adaptive policy design that maximises progress against economic, social and health goals. Whilst our methods will be adaptable across policy topics and jurisdictions, we will initially focus on four policy areas: Inclusive Economic Growth, Adverse Childhood Experiences, Mental Wellbeing and Housing

    Non-isothermal model for the direct isotropic/smectic-A liquid crystalline transition

    Full text link
    An extension to a high-order model for the direct isotropic/smectic-A liquid crystalline phase transition was derived to take into account thermal effects including anisotropic thermal diffusion and latent heat of phase-ordering. Multi-scale multi-transport simulations of the non-isothermal model were compared to isothermal simulation, showing that the presented model extension corrects the standard Landau-de Gennes prediction from constant growth to diffusion-limited growth, under shallow quench/undercooling conditions. Non-isothermal simulations, where meta-stable nematic pre-ordering precedes smectic-A growth, were also conducted and novel non-monotonic phase-transformation kinetics observed.Comment: First revision: 20 pages, 7 figure
    corecore