46 research outputs found
Regulation of MT1-MMP Activity through Its Association with ERMs
Membrane-bound proteases play a key role in biology by degrading matrix proteins or shedding adhesion receptors. MT1-MMP metalloproteinase is critical during cancer invasion, angiogenesis, and development. MT1-MMP activity is strictly regulated by internalization, recycling, autoprocessing but also through its incorporation into tetraspanin-enriched microdomains (TEMs), into invadopodia, or by its secretion on extracellular vesicles (EVs). We identified a juxtamembrane positively charged cluster responsible for the interaction of MT1-MMP with ERM (ezrin/radixin/moesin) cytoskeletal connectors in breast carcinoma cells. Linkage to ERMs regulates MT1-MMP subcellular distribution and internalization, but not its incorporation into extracellular vesicles. MT1-MMP association to ERMs and insertion into TEMs are independent phenomena, so that mutation of the ERM-binding motif in the cytoplasmic region of MT1-MMP does not preclude its association with the tetraspanin CD151, but impairs the accumulation and coalescence of CD151/MT1-MMP complexes at actin-rich structures. Conversely, gene deletion of CD151 does not impact on MT1-MMP colocalization with ERM molecules. At the plasma membrane MT1-MMP autoprocessing is severely dependent on ERM association and seems to be the dominant regulator of the enzyme collagenolytic activity. This newly characterized MT1-MMP/ERM association can thus be of relevance for tumor cell invasion.This work has been supported by grants BFU2014-55478-R, REDIEX. SAF2015-71231-REDT and BIO2017-86500-R from Ministerio Español de Economía y Competitividad (MINECO) and by a grant from Fundación Ramón Areces “Ayudas a la Investigación en Ciencias de la Vida y de la Materia, 2014” to M.Y.-M. H.S. was supported by a FPI-UAM fellowship. The CNIC is supported by the Ministry of Ciencia, Innovacion y Universidades and the Pro CNIC Foundation, is a Severo Ochoa Center of Excellence (SEV-2015-0505), also supported by European Regional Development Fund (FEDER) “Una manera de hacer Europa”.S
CD81 controls sustained T cell activation signaling and defines the maturation stages of cognate immunological synapses
In this study, we investigated the dynamics of the molecular interactions of tetraspanin CD81 in T lymphocytes, and we show that CD81 controls the organization of the immune synapse (IS) and T cell activation. Using quantitative microscopy, including fluorescence recovery after photobleaching (FRAP), phasor fluorescence lifetime imaging microscopy-Föster resonance energy transfer (phasorFLIM-FRET), and total internal reflection fluorescence microscopy (TIRFM), we demonstrate that CD81 interacts with ICAM-1 and CD3 during conjugation between T cells and antigen-presenting cells (APCs). CD81 and ICAM-1 exhibit distinct mobilities in central and peripheral areas of early and late T cell-APC contacts. Moreover, CD81-ICAM-1 and CD81- CD3 dynamic interactions increase over the time course of IS formation, as these molecules redistribute throughout the contact area. Therefore, CD81 associations unexpectedly define novel sequential steps of IS maturation. Our results indicate that CD81 controls the temporal progression of the IS and the permanence of CD3 in the membrane contact area, contributing to sustained T cell receptor (TCR)-CD3-mediated signaling. Accordingly, we find that CD81 is required for proper T cell activation, regulating CD3ζ, ZAP-70, LAT, and extracellular signal-regulated kinase (ERK) phosphorylation; CD69 surface expression; and interleukin- 2 (IL-2) secretion. Our data demonstrate the important role of CD81 in the molecular organization and dynamics of the IS architecture that sets the signaling threshold in T cell activationThis work was supported by SAF2011-25834 from the Spanish Ministry of
Science and Innovation, INDISNET-S2011/BMD-2332 from the Comunidad
de Madrid, Cardiovascular Network RD12-0042-0056 from the Instituto
Salud Carlos III, and ERC-2011-AdG 294340-GENTRI
Monomer–dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies
To search for functional links between glycosylphosphatidylinositol (GPI) protein monomer–oligomer exchange and membrane dynamics and confinement, we studied urokinase plasminogen activator (uPA) receptor (uPAR), a GPI receptor involved in the regulation of cell adhesion, migration, and proliferation. Using a functionally active fluorescent protein–uPAR in live cells, we analyzed the effect that extracellular matrix proteins and uPAR ligands have on uPAR dynamics and dimerization at the cell membrane. Vitronectin directs the recruitment of dimers and slows down the diffusion of the receptors at the basal membrane. The commitment to uPA–plasminogen activator inhibitor type 1–mediated endocytosis and recycling modifies uPAR diffusion and induces an exchange between uPAR monomers and dimers. This exchange is fully reversible. The data demonstrate that cell surface protein assemblies are important in regulating the dynamics and localization of uPAR at the cell membrane and the exchange of monomers and dimers. These results also provide a strong rationale for dynamic studies of GPI-anchored molecules in live cells at steady state and in the absence of cross-linker/clustering agents
Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms
VCAM-1 and ICAM-1, receptors for leukocyte integrins, are recruited to cell–cell contact sites on the apical membrane of activated endothelial cells. In this study, we show that this recruitment is independent of ligand engagement, actin cytoskeleton anchorage, and heterodimer formation. Instead, VCAM-1 and ICAM-1 are recruited by inclusion within specialized preformed tetraspanin-enriched microdomains, which act as endothelial adhesive platforms (EAPs). Using advanced analytical fluorescence techniques, we have characterized the diffusion properties at the single-molecule level, nanoscale organization, and specific intradomain molecular interactions of EAPs in living primary endothelial cells. This study provides compelling evidence for the existence of EAPs as physical entities at the plasma membrane, distinct from lipid rafts. Scanning electron microscopy of immunogold-labeled samples treated with a specific tetraspanin-blocking peptide identify nanoclustering of VCAM-1 and ICAM-1 within EAPs as a novel mechanism for supramolecular organization that regulates the leukocyte integrin–binding capacity of both endothelial receptors during extravasation
The Nanomechanical Properties of CLL Cells Are Linked to the Actin Cytoskeleton and Are a Potential Target of BTK Inhibitors.
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an intense trafficking of the leukemic cells between the peripheral blood and lymphoid tissues. It is known that the ability of lymphocytes to recirculate strongly depends on their capability to rapidly rearrange their cytoskeleton and adapt to external cues; however, little is known about the differences occurring between CLL and healthy B cells during these processes. To investigate this point, we applied a single-cell optical (super resolution microscopy) and nanomechanical approaches (atomic force microscopy, real-time deformability cytometry) to both CLL and healthy B lymphocytes and compared their behavior. We demonstrated that CLL cells have a specific actomyosin complex organization and altered mechanical properties in comparison to their healthy counterpart. To evaluate the clinical relevance of our findings, we treated the cells in vitro with the Bruton's tyrosine kinase inhibitors and we found for the first time that the drug restores the CLL cells mechanical properties to a healthy phenotype and activates the actomyosin complex. We further validated these results in vivo on CLL cells isolated from patients undergoing ibrutinib treatment. Our results suggest that CLL cells' mechanical properties are linked to their actin cytoskeleton organization and might be involved in novel mechanisms of drug resistance, thus becoming a new potential therapeutic target aiming at the normalization of the mechanical fingerprints of the leukemic cells.CS project is supported by Associazione Italiana per la Ricerca sul Cancro
AIRC under IG 2018 - ID 21332 project. OO gratefully acknowledges financial support from the German Federal Ministry of Education and Research
(ZIK grant to OO under grant agreement no. 03Z22CN11) as well as from
the German Center for Cardiovascular Research (Postdoc start-up grant to
OO under grant agreement no. 81X3400107). CAM acknowledges financial support from the Italian Ministry of University and Research (MIUR)
Department of Excellence project PREMIA (PREcision MedIcine Approach:
bringing biomarker research to clinics). STED microscopy was conducted at
the Microscopy & Dynamic Imaging Unit, CNIC, ICTS-ReDib, co-funded
by MCIN/AEI/10.13039/501100011033, and FEDER “Una manera de
hacer Europa” (#ICTS-2018-04-CNIC-16). The CNIC is supported by the
Ministerio de Ciencia e Innovación and the Pro CNIC Foundation and is a
Severo Ochoa Center of Excellence (CEX2020-001041-S). Schemes in figures 1, 2, 3 and 4 have been generated with BioRender.com. Funding for the project was provided by the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 282510 – BLUEPRINT.S
Caveolin-1 dolines form a distinct and rapid caveolae-independent mechanoadaptation system.
In response to different types and intensities of mechanical force, cells modulate their physical properties and adapt their plasma membrane (PM). Caveolae are PM nano-invaginations that contribute to mechanoadaptation, buffering tension changes. However, whether core caveolar proteins contribute to PM tension accommodation independently from the caveolar assembly is unknown. Here we provide experimental and computational evidence supporting that caveolin-1 confers deformability and mechanoprotection independently from caveolae, through modulation of PM curvature. Freeze-fracture electron microscopy reveals that caveolin-1 stabilizes non-caveolar invaginations-dolines-capable of responding to low-medium mechanical forces, impacting downstream mechanotransduction and conferring mechanoprotection to cells devoid of caveolae. Upon cavin-1/PTRF binding, doline size is restricted and membrane buffering is limited to relatively high forces, capable of flattening caveolae. Thus, caveolae and dolines constitute two distinct albeit complementary components of a buffering system that allows cells to adapt efficiently to a broad range of mechanical stimuli.We thank R. Parton (Institute for Molecular Biosciences, Queensland),
P. Pilch (Boston University School of Medicine) and L. Liu (Boston
University School of Medicine) for kindly providing PTRFKO cells and
reagents, S. Casas Tintó for kindly providing SH-Sy5y cells, P. Bassereau
(Curie Institute, Paris) for kindly providing OT setup, V. Labrador
Cantarero from CNIC microscopy Unit for helping with ImageJ analysis,
O. Otto and M. Herbig for providing help with RTDC experiments,
S. Berr and K. Gluth for technical assistance in cell culture, F. Steiniger
for support in electron tomography, and A. Norczyk Simón for providing
pCMV-FLAG-PTRF construct. This project received funding from the European Union Horizon 2020 Research and Innovation Programme
through Marie Sklodowska-Curie grant 641639; grants from the Spanish
Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033):
SAF2014-51876-R, SAF2017-83130-R co-funded by ‘ERDF A way
of making Europe’, PID2020-118658RB-I00, PDC2021-121572-100
co-funded by ‘European Union NextGenerationEU/PRTR’, CSD2009-
0016 and BFU2016-81912-REDC; and the Asociación Española Contra
el Cáncer foundation (PROYE20089DELP) all to M.A.d.P. M.A.d.P. is
member of the Tec4Bio consortium (ref. S2018/NMT¬4443; Comunidad
Autónoma de Madrid/FEDER, Spain), co-recipient with P.R.-C. of
grants from Fundació La Marató de TV3 (674/C/2013 and 201936-
30-31), and coordinator of a Health Research consortium grant from
Fundación Obra Social La Caixa (AtheroConvergence, HR20-00075).
M.S.-A. is recipient of a Ramón y Cajal research contract from MCIN
(RYC2020-029690-I). The CNIC Unit of Microscopy and Dynamic
Imaging is supported by FEDER ‘Una manera de hacer Europa’ (ReDIB
ICTS infrastructure TRIMA@CNIC, MCIN). We acknowledge the
support from Deutsche Forschungsgemeinschaft through grants
to M.M.K. (KE685/7-1) and B.Q. (QU116/6-2 and QU116/9-1). Work in
D.N. laboratory was supported by grants from the European Union
Horizon 2020 Research and Innovation Programme through Marie
Sklodowska-Curie grant 812772 and MCIN (DPI2017-83721-P). Work in
C.L. laboratory was supported by grants from Curie, INSERM, CNRS,
Agence Nationale de la Recherche (ANR-17-CE13-0020-01) and
Fondation ARC pour la Recherche (PGA1-RF20170205456). Work in
P.R.-C. lab is funded by the MCIN (PID2019-110298GB-I00), the EC (H20
20-FETPROACT-01-2016-731957). Work in X.T. lab is funded by the MICIN
(PID2021-128635NB-I00), ERC (Adv-883739) and La Caixa Foundation
(LCF/PR/HR20/52400004; co-recipient with P.R.-C.). IBEC is recipient of
a Severo Ochoa Award of Excellence from the MINECO. The funders had
no role in study design, data collection and analysis, decision to publish
or preparation of the manuscript. The CNIC is supported by the Instituto
de Salud Carlos III (ISCIII), the MCIN and the Pro CNIC Foundation, and is
a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded
by MICIN/AEI/10.13039/501100011033).S
Recommended from our members