36 research outputs found

    Regulation of MT1-MMP Activity through Its Association with ERMs

    Get PDF
    Membrane-bound proteases play a key role in biology by degrading matrix proteins or shedding adhesion receptors. MT1-MMP metalloproteinase is critical during cancer invasion, angiogenesis, and development. MT1-MMP activity is strictly regulated by internalization, recycling, autoprocessing but also through its incorporation into tetraspanin-enriched microdomains (TEMs), into invadopodia, or by its secretion on extracellular vesicles (EVs). We identified a juxtamembrane positively charged cluster responsible for the interaction of MT1-MMP with ERM (ezrin/radixin/moesin) cytoskeletal connectors in breast carcinoma cells. Linkage to ERMs regulates MT1-MMP subcellular distribution and internalization, but not its incorporation into extracellular vesicles. MT1-MMP association to ERMs and insertion into TEMs are independent phenomena, so that mutation of the ERM-binding motif in the cytoplasmic region of MT1-MMP does not preclude its association with the tetraspanin CD151, but impairs the accumulation and coalescence of CD151/MT1-MMP complexes at actin-rich structures. Conversely, gene deletion of CD151 does not impact on MT1-MMP colocalization with ERM molecules. At the plasma membrane MT1-MMP autoprocessing is severely dependent on ERM association and seems to be the dominant regulator of the enzyme collagenolytic activity. This newly characterized MT1-MMP/ERM association can thus be of relevance for tumor cell invasion.This work has been supported by grants BFU2014-55478-R, REDIEX. SAF2015-71231-REDT and BIO2017-86500-R from Ministerio Español de Economía y Competitividad (MINECO) and by a grant from Fundación Ramón Areces “Ayudas a la Investigación en Ciencias de la Vida y de la Materia, 2014” to M.Y.-M. H.S. was supported by a FPI-UAM fellowship. The CNIC is supported by the Ministry of Ciencia, Innovacion y Universidades and the Pro CNIC Foundation, is a Severo Ochoa Center of Excellence (SEV-2015-0505), also supported by European Regional Development Fund (FEDER) “Una manera de hacer Europa”.S

    CD81 controls sustained T cell activation signaling and defines the maturation stages of cognate immunological synapses

    Full text link
    In this study, we investigated the dynamics of the molecular interactions of tetraspanin CD81 in T lymphocytes, and we show that CD81 controls the organization of the immune synapse (IS) and T cell activation. Using quantitative microscopy, including fluorescence recovery after photobleaching (FRAP), phasor fluorescence lifetime imaging microscopy-Föster resonance energy transfer (phasorFLIM-FRET), and total internal reflection fluorescence microscopy (TIRFM), we demonstrate that CD81 interacts with ICAM-1 and CD3 during conjugation between T cells and antigen-presenting cells (APCs). CD81 and ICAM-1 exhibit distinct mobilities in central and peripheral areas of early and late T cell-APC contacts. Moreover, CD81-ICAM-1 and CD81- CD3 dynamic interactions increase over the time course of IS formation, as these molecules redistribute throughout the contact area. Therefore, CD81 associations unexpectedly define novel sequential steps of IS maturation. Our results indicate that CD81 controls the temporal progression of the IS and the permanence of CD3 in the membrane contact area, contributing to sustained T cell receptor (TCR)-CD3-mediated signaling. Accordingly, we find that CD81 is required for proper T cell activation, regulating CD3ζ, ZAP-70, LAT, and extracellular signal-regulated kinase (ERK) phosphorylation; CD69 surface expression; and interleukin- 2 (IL-2) secretion. Our data demonstrate the important role of CD81 in the molecular organization and dynamics of the IS architecture that sets the signaling threshold in T cell activationThis work was supported by SAF2011-25834 from the Spanish Ministry of Science and Innovation, INDISNET-S2011/BMD-2332 from the Comunidad de Madrid, Cardiovascular Network RD12-0042-0056 from the Instituto Salud Carlos III, and ERC-2011-AdG 294340-GENTRI

    Monomer–dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies

    Get PDF
    To search for functional links between glycosylphosphatidylinositol (GPI) protein monomer–oligomer exchange and membrane dynamics and confinement, we studied urokinase plasminogen activator (uPA) receptor (uPAR), a GPI receptor involved in the regulation of cell adhesion, migration, and proliferation. Using a functionally active fluorescent protein–uPAR in live cells, we analyzed the effect that extracellular matrix proteins and uPAR ligands have on uPAR dynamics and dimerization at the cell membrane. Vitronectin directs the recruitment of dimers and slows down the diffusion of the receptors at the basal membrane. The commitment to uPA–plasminogen activator inhibitor type 1–mediated endocytosis and recycling modifies uPAR diffusion and induces an exchange between uPAR monomers and dimers. This exchange is fully reversible. The data demonstrate that cell surface protein assemblies are important in regulating the dynamics and localization of uPAR at the cell membrane and the exchange of monomers and dimers. These results also provide a strong rationale for dynamic studies of GPI-anchored molecules in live cells at steady state and in the absence of cross-linker/clustering agents

    Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms

    Get PDF
    VCAM-1 and ICAM-1, receptors for leukocyte integrins, are recruited to cell–cell contact sites on the apical membrane of activated endothelial cells. In this study, we show that this recruitment is independent of ligand engagement, actin cytoskeleton anchorage, and heterodimer formation. Instead, VCAM-1 and ICAM-1 are recruited by inclusion within specialized preformed tetraspanin-enriched microdomains, which act as endothelial adhesive platforms (EAPs). Using advanced analytical fluorescence techniques, we have characterized the diffusion properties at the single-molecule level, nanoscale organization, and specific intradomain molecular interactions of EAPs in living primary endothelial cells. This study provides compelling evidence for the existence of EAPs as physical entities at the plasma membrane, distinct from lipid rafts. Scanning electron microscopy of immunogold-labeled samples treated with a specific tetraspanin-blocking peptide identify nanoclustering of VCAM-1 and ICAM-1 within EAPs as a novel mechanism for supramolecular organization that regulates the leukocyte integrin–binding capacity of both endothelial receptors during extravasation
    corecore