118 research outputs found

    Total Absorption Spectroscopy Study of Rb 92 Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    Get PDF
    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calcu- lations based on the conversion of integral beta spectra recorded at the ILL reactor. 92Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied 92Rb decay with total absorption spectroscopy. Previ- ously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed

    New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products

    Get PDF
    In this paper, we study the impact of the inclusion of the recently measured beta decay properties of the 102;104;105;106;107^{102;104;105;106;107}Tc, 105^{105}Mo, and 101^{101}Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes 235,238^{235, 238}U, and 239,241^{239,241}Pu. These actinides are the main contributors to the fission processes in Pressurized Water Reactors. The beta feeding probabilities of the above-mentioned Tc, Mo and Nb isotopes have been found to play a major role in the γ\gamma component of the decay heat of 239^{239}Pu, solving a large part of the γ\gamma discrepancy in the 4 to 3000\,s range. They have been measured using the Total Absorption Technique (TAS), avoiding the Pandemonium effect. The calculations are performed using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of 235^{235}U, 239,241^{239,241}Pu and in particular of 238^{238}U for which no measurement has been published yet. We conclude that new TAS measurements are mandatory to improve the reliability of the predicted spectra.Comment: 10 pages, 2 figure

    Antineutrino emission and gamma background characteristics from a thermal research reactor

    Full text link
    The detailed understanding of the antineutrino emission from research reactors is mandatory for any high sensitivity experiments either for fundamental or applied neutrino physics, as well as a good control of the gamma and neutron backgrounds induced by the reactor operation. In this article, the antineutrino emission associated to a thermal research reactor: the OSIRIS reactor located in Saclay, France, is computed in a first part. The calculation is performed with the summation method, which sums all the contributions of the beta decay branches of the fission products, coupled for the first time with a complete core model of the OSIRIS reactor core. The MCNP Utility for Reactor Evolution code was used, allowing to take into account the contributions of all beta decayers in-core. This calculation is representative of the isotopic contributions to the antineutrino flux which can be found at research reactors with a standard 19.75\% enrichment in 235^{235}U. In addition, the required off-equilibrium corrections to be applied to converted antineutrino energy spectra of uranium and plutonium isotopes are provided. In a second part, the gamma energy spectrum emitted at the core level is provided and could be used as an input in the simulation of any reactor antineutrino detector installed at such research facilities. Furthermore, a simulation of the core surrounded by the pool and the concrete shielding of the reactor has been developed in order to propagate the emitted gamma rays and neutrons from the core. The origin of these gamma rays and neutrons is discussed and the associated energy spectrum of the photons transported after the concrete walls is displayed.Comment: 14 pages, 11 figures, Data in Appendix A and B (13 pages

    Total Absorption Spectroscopy Study of 92^{92}Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    Full text link
    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. 92^{92}Rb makes the dominant contribution to the reactor spectrum in the 5-8 MeV range but its decay properties are in question. We have studied 92^{92}Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.Comment: 6 pages, 3 figure

    Total absorption spectroscopy study of the beta decay of Br-86 and Rb-91

    Get PDF
    The beta decays of Br-86 and Rb-91 have been studied using the total absorption spectroscopy technique. The radioactive nuclei were produced at the Ion Guide Isotope Separator On-Line facility in Jyvaskyla and further purified using the JYFLTRAP. Br-86 and Rb-91 are considered to be major contributors to the decay heat in reactors. In addition, Rb-91 was used as a normalization point in direct measurements of mean gamma energies released in the beta decay of fission products by Rudstam et al. assuming that this decaywas well known from high-resolution measurements. Our results show that both decays were suffering from the Pandemonium effect and that the results of Rudstam et al. should be renormalized. The relative impact of the studied decays in the prediction of the decay heat and antineutrino spectrum from reactors has been evaluated.Peer reviewe
    corecore