120 research outputs found

    Incidence of otolaryngological symptoms in patients with temporomandibular joint dysfunctions

    Get PDF
    The functional disorders of the masticatory organ are the third stomatological disease to be considered a populational disease due to its chronicity and widespread prevalence. Otolaryngological symptoms are a less common group of dysfunction symptoms, including sudden hearing impairment or loss, ear plugging sensation and earache, sore and burning throat, difficulties in swallowing, tinnitus, and vertigo. The diagnostic and therapeutic problems encountered in patients with the functional disorders of the masticatory organ triggered our interest in conducting retrospective studies with the objective of assessing the incidence of otolaryngological symptoms in patients subjected to prosthetic treatment of the functional disorders of masticatory organ on the basis of the analysis of medical documentation containing data collected in medical interviews. Material and Methods. Retrospective study was conducted by analyzing the results of medical interviews of 1208 patients, who had reported for prosthetic treatment at the Functional Disorders Clinic of the Department of Dental Prosthetics of Jagiellonian University Medical College in Cracow between 2008 and March 14, 2014. Results. Otolaryngological symptoms were observed in 141 patients. The most common symptoms in the study group were earache and sudden hearing impairment; no cases of sudden hearing loss were experienced

    M\"{o}ssbauer study of the '11' iron-based superconductors parent compound Fe(1+x)Te

    Full text link
    57Fe Moessbauer spectroscopy was applied to investigate the superconductor parent compound Fe(1+x)Te for x=0.06, 0.10, 0.14, 0.18 within the temperature range 4.2 K - 300 K. A spin density wave (SDW) within the iron atoms occupying regular tetrahedral sites was observed with the square root of the mean square amplitude at 4.2 K varying between 9.7 T and 15.7 T with increasing x. Three additional magnetic spectral components appeared due to the interstitial iron distributed over available sites between the Fe-Te layers. The excess iron showed hyperfine fields at approximately 16 T, 21 T and 49 T for three respective components at 4.2 K. The component with a large field of 49 T indicated the presence of isolated iron atoms with large localized magnetic moment in interstitial positions. Magnetic ordering of the interstitial iron disappeared in accordance with the fallout of the SDW with the increasing temperature

    Incommensurate magnetic order in the alpha-Fe(Te,Se) superconductor systems

    Get PDF
    Magnetic spin fluctuations is one candidate to produce the bosonic modes that mediate the superconductivity in the ferrous superconductors. Up until now, all of the LaOFeAs and BaFe2As2 structure types have simple commensurate magnetic ground states, as result of nesting Fermi surfaces. This type of spin-density-wave (SDW) magnetic order is known to be vulnerable to shifts in the Fermi surface when electronic densities are altered at the superconducting compositions. Superconductivity has more recently been discovered in alpha-Fe(Te,Se), whose electronically active antifluorite planes are isostructural to the FeAs layers found in the previous ferrous superconductors and share with them the same quasi-two-dimensional electronic structure. Here we report neutron scattering studies that reveal a unique complex incommensurate antiferromagnetic order in the parent compound alpha-FeTe. When the long-range magnetic order is suppressed by the isovalent substitution of Te with Se, short-range correlations survive in the superconducting phase.Comment: 27 pages, 7 figures, 1 tabl

    Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes

    Get PDF
    The space segment of the European Global Navigation Satellite System (GNSS) Galileo consists of In-Orbit Validation (IOV) and Full Operational Capability (FOC) spacecraft. The first pair of FOC satellites was launched into an incorrect, highly eccentric orbital plane with a lower than nominal inclination angle. All Galileo satellites are equipped with satellite laser ranging (SLR) retroreflectors which allow, for example, for the assessment of the orbit quality or for the SLR–GNSS co-location in space. The number of SLR observations to Galileo satellites has been continuously increasing thanks to a series of intensive campaigns devoted to SLR tracking of GNSS satellites initiated by the International Laser Ranging Service. This paper assesses systematic effects and quality of Galileo orbits using SLR data with a main focus on Galileo satellites launched into incorrect orbits. We compare the SLR observations with respect to microwave-based Galileo orbits generated by the Center for Orbit Determination in Europe (CODE) in the framework of the International GNSS Service Multi-GNSS Experiment for the period 2014.0–2016.5. We analyze the SLR signature effect, which is characterized by the dependency of SLR residuals with respect to various incidence angles of laser beams for stations equipped with single-photon and multi-photon detectors. Surprisingly, the CODE orbit quality of satellites in the incorrect orbital planes is not worse than that of nominal FOC and IOV orbits. The RMS of SLR residuals is even lower by 5.0 and 1.5 mm for satellites in the incorrect orbital planes than for FOC and IOV satellites, respectively. The mean SLR offsets equal −44.9,−35.0, and −22.4 mm for IOV, FOC, and satellites in the incorrect orbital plane. Finally, we found that the empirical orbit models, which were originally designed for precise orbit determination of GNSS satellites in circular orbits, provide fully appropriate results also for highly eccentric orbits with variable linear and angular velocities

    Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis

    Get PDF
    Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors

    Structure and magnetism in the bond-frustrated spinel ZnCr2Se4ZnCr_2Se_4

    Get PDF
    The crystal and magnetic structures of stoichiometric ZnCr2Se4ZnCr_2Se_4 have been investigated using synchrotron x-ray and neutron powder diffraction, muon spin relaxation (μSRμSR), and inelastic neutron scattering. Synchrotron x-ray diffraction shows a spin-lattice distortion from the cubic Fd3ˉmFd\bar3m spinel to a tetragonal I41/amdI4_1/amd lattice below TN=21KT_N = 21 K, where powder neutron diffraction confirms the formation of a helical magnetic structure with magnetic moment of 3.04(3)μB3.04(3) μ_B at 1.5 K, close to that expected for high-spin Cr3+Cr^{3+}. μSRμSR measurements show prominent local spin correlations that are established at temperatures considerably higher (100 μs^{-1}\)) muon relaxation rates are suggestive of rapid site hopping of the muons in static field. Inelastic neutron scattering measurements show a gapless mode at an incommensurate propagation vector of k = [000.4648(2)] in the low-temperature magnetic ordered phase that extends to 0.8 meV. The dispersion is modeled by a two-parameter Hamiltonian, containing ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions with a Jnnn/Jnn=0.337J_{nnn}/J_{nn} = -0.337

    Tropomyosin 1: multiple roles in the developing heart and in the formation of congenital heart defects

    Get PDF
    Tropomyosin 1 (TPM1) is an essential sarcomeric component, stabilising the thin filament and facilitating actin's interaction with myosin. A number of sarcomeric proteins, such as alpha myosin heavy chain, play crucial roles in cardiac development. Mutations in these genes have been linked to congenital heart defects (CHDs), occurring in approximately 1 in 145 live births. To date, TPM1 has not been associated with isolated CHDs. Analysis of 380 CHD cases revealed three novel mutations in the TPM1 gene; IVS1 + 2T > C, I130V, S229F and a polyadenylation signal site variant GATAAA/AATAAA. Analysis of IVS1 + 2T > C revealed aberrant pre-mRNA splicing. In addition, abnormal structural properties were found in hearts transfected with TPM1 carrying I130V and S229F mutations. Phenotypic analysis of TPM1 morpholino-treated embryos revealed roles for TPM1 in cardiac looping, atrial septation and ventricular trabeculae formation and increased apoptosis was seen within the heart. In addition, sarcomere assembly was affected and altered action potentials were exhibited. This study demonstrated that sarcomeric TPM1 plays vital roles in cardiogenesis and is a suitable candidate gene for screening individuals with isolated CHDs
    corecore