11 research outputs found

    Molecular characterization, expression pattern and immunologic function of CD82a in large yellow croaker (Larimichthys crocea)

    Get PDF
    Visceral white spot disease (VWND) caused by Pseudomonas plecoglossicida poses a major threat to the sustainable development of large yellow croaker (Larimichthys crocea) aquaculture. Genome-wide association analysis (GWAS) and RNA-seq research indicated that LcCD82a play an important role in resistance to visceral white spot disease in L. crocea, but the molecular mechanism of LcCD82a response to P. plecoglossicida infection is still unclear. In this study, we cloned and validated the Open Reading Frame (ORF) sequence of LcCD82a and explored the expression profile of LcCD82a in various tissues of L.crocea. In addition, two different transcript variants (LcCD82a-L and LcCD82a-S) of LcCD82a were identified that exhibit alternative splicing patterns after P. plecoglossicida infection, which may be closely related to the immune regulation during pathogenetic process of VWND. In order to explore the function of LcCD82a, we purified the recombinant protein of LcCD82a-L and LcCD82a-S. The bacterial agglutination and apoptosis function analysis showed that LcCD82a may involve in extracellular bacterial recognition, agglutination, and at the same time participate in the process of antigen presentation and induction of cell apoptosis. Collectively, our studies demonstrate that LcCD82a plays a crucial role in regulating apoptosis and antimicrobial immunity

    Development and characterization of a new cell line derived from European eel Anguilla anguilla kidney

    No full text
    A new cell line derived from the kidney of European eel, Anguilla anguilla, has been established and characterized. This cell line, designated as EK (eel kidney), has been maintained in Leibovitz's L-15 supplemented with 10% fetal bovine serum for over 24 months, and subcultured more than 60 times. This cell line consists predominantly of fibroblast-like cells, and can grow at 15–37°C under an optimum temperature of 26°C. The origin of this cell line was confirmed by polymerase chain reaction (PCR) amplification and 18s recombinant (r)RNA sequencing. The chromosome analysis of EK cells at passage 58 revealed an ananeuploid karyotype. The EK cells were successfully transfected with the Pegfp-N1 plasmid, suggesting its potential in genetic studies. The susceptibility test showed a significant cytopathic effect (CPE) in EK cells for Rana grylio virus, and the viral replication was evidenced with quantitative real-time PCR (qRT-PCR) assay. After poly (I:C) stimulation, the expression of the immune-related molecules including interferon regulatory factor-3 (irf3), interferon regulatory factor-7 (irf7) and cytochrome P450 (CYP450) were significantly upregulated in EK cells, while the expression of transforming growth factor (TGF-β) was downregulated. These results suggested the potential of EK cell line as a model in gene engineering, virus identification and environmental toxicology

    A Computation-Efficient Group Key Distribution Protocol Based on a New Secret Sharing Scheme

    No full text
    With the development of 5G and the Internet of Things (IoT), mobile terminals are widely used in various applications under multicast scenarios. However, due to the limited computation resources of mobile terminals, reducing the computation cost of members in group key distribution processes of dynamic groups has become an important issue. In this paper, we propose a computation-efficient group key distribution (CEGKD) protocol. First, an improved secret sharing scheme is proposed to construct faster encryption and decryption algorithms. Second, the tree structure of logical key hierarchy (LKH) is employed to implement a simple and effective key-numbering method. Theoretical analysis is given to prove that the proposed protocol meets forward security and backward security. In addition, the experiment results show that the computation cost of CEGKD on the member side is reduced by more than 85% compared with that of the LKH scheme

    A X-ray Excitable Vibrational AIE System Based on Platinum (II) Salts

    No full text
    The current work reported an inorganic salt based aggregation-induced emission system which can be excited by X-ray. The underlying mechanism has been systematically studied

    BioAIEgens Derived from Rosin: How Does Molecular Motion Affect Their Photophysical Processes in Solid State?

    No full text
    The exploration of artificial luminogens with bright emission has been fully developed with the advancement of synthetic chemistry. However, many of them face problems like weakened emission in the aggregated state as well as poor renewability and sustainability. Therefore, the development of renewable and sustainable luminogens with anti-quenching function in the solid state, as well as to unveil the key factors that influence their luminescence behavior become highly significant. Herein, a new class of natural rosin-derived luminogens with aggregation-induced emission property (AIEgens) have been facilely obtained with good biocompatibility and targeted organelle imaging capability as well as photochromic behavior in the solid state. Mechanistic study indicates that the introduction of the alicyclic moiety helps suppress the excited-state molecular motion to enhance the solid-state emission. The current work fundamentally elucidates the role of alicyclic moiety in luminogen design and practically demonstrates a new source to large-scalely obtain biocompatible AIEgens.</p

    A New Strategy to Improve the Toughness of Epoxy Thermosets—By Introducing Poly(ether nitrile ketone)s Containing Phthalazinone Structures

    No full text
    As high brittleness limits the application of all epoxy resins (EP), here, it can be modified by high-performance thermoplastic poly(ether nitrile ketone) containing phthalazinone structures (PPENK). Therefore, the influence of different PPENK contents on the mechanical, thermal, and low-temperature properties of EP was comprehensively investigated in this paper. The binary blend of PPENK/EP exhibited excellent properties due to homogeneous mixing and good interaction. The presence of PPENK significantly improved the mechanical properties of EP, showing 131.0%, 14.2%, and 10.0% increases in impact, tensile, and flexural strength, respectively. Morphological studies revealed that the crack deflection and bridging in PPENK were the main toughening mechanism in the blend systems. In addition, the PPENK/EP blends showed excellent thermal and low-temperature properties (−183 °C). The glass transition temperatures of the PPENK/EP blends were enhanced by approximately 50 °C. The 15 phr of the PPENK/EP blends had a low-temperature flexural strength of up to 230 MPa, which was 46.5% higher than EP. Furthermore, all blends exhibited better thermal stability

    Multi-stimuli-Responsive and Cell Membrane Camouflaged AIE Nanogels for Precise Chemo-Photothermal Synergistic Therapy of Tumors

    No full text
    Targeted and controllable drug release at lesion sites with the aid of visual navigation in real-time is of great significance for precise theranostics of cancers. Benefiting from the marvellous features (e.g. bright emission and phototheranostic effect in aggregates) of aggregation-induced emission (AIE) materials, constructing AIE-based multifunctional nanocarriers that act as all-rounders to integrate multimodalities for precise theranostics is highly desirable. Here, an intelligent nanoplatform (P-TN-Dox@CM) with homologous targeting, controllable drug release, and in vivo dual-modal imaging for precise chemo-photothermal synergistic therapy is proposed. AIE photothermic agent (TN) and anticancer drug (Dox) are encapsulated in thermo-/pH-responsive nanogels (PNA), and the tumor cell membranes are camouflaged onto the surface of nanogels. Active targeting can be realized through homologous effects derived from source tumor cell membranes, which significantly elevates the specific drug delivery to tumor sites. After being engulfed into tumor cells, the nanogels exhibit a burst drug release at low pH. The near-infrared (NIR)-photoinduced local hyperthermia can activate severe cytotoxicity and further accelerate drug release, thus generating enhanced synergistic chemo-photothermal therapy to thoroughly eradicate tumors. Moreover, P-TN-Dox@CM nanogels could achieve NIR-fluorescence/photothermal dual-modal imaging to monitor dynamic distribution of therapeutics in real-time. This work highlights the great potential of smart P-TN-Dox@CM nanogels as a versatile nanoplatform to integrate multimodalities for precise chemo-photothermal synergistic therapy in combating cancers
    corecore