39 research outputs found

    Steroid Hormone Signaling Is Essential to Regulate Innate Immune Cells and Fight Bacterial Infection in Drosophila

    Get PDF
    Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes) by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils) is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of immunity in vivo in Drosophila, and paves the way for genetic dissection of the mechanisms at work behind steroid regulation of innate immune cells.FCT fellowships: (SFRH/BPD/44613/2008, SFRH/BD/51175/2010), EMBO: (ALTF 178-2009), Gulbenkian Institute PhD Program

    Transcriptomic-based selection of reference genes for quantitative real-time PCR in an insect endosymbiotic model

    Get PDF
    Reference genes are a fundamental tool for analyses of gene expression by real-time quantitative PCR (qRT-PCR), in that they ensure the correct comparison between conditions, stages, or treatments. Because of this, selection of appropriate genes to use as references is crucial for proper application of the technique. Nevertheless, efforts to find appropriate, stably expressed transcripts are still lacking, in particular in the field of insect science. Here, we took advantage of a massive transcriptomic high-throughput analysis of various developmental stages of the gut and associated-bacteriomes of the cereal weevil Sitophilus oryzae and identified a subset of stably expressed genes with the potential to be used as housekeeping genes from the larva to the adult stage. We employed several normalization techniques to select the most suitable genes among our subset. Our final selection includes two genes–TAO, and YTH3–which can also be used to compare transcript abundance at various developmental stages in symbiotic insects, and in insects devoid of endosymbionts (aposymbiotic). Since they are well conserved, these genes have the potential to be useful for many other insect species. This work confirms the interest in using large-scale, unbiased methods for reference gene selection

    The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection

    Get PDF
    The Drosophila host defense against gram-negative bacteria is mediated by the Imd pathway upon sensing of peptidoglycan by the peptidoglycan recognition protein (PGRP)-LC. Here we report a functional analysis of PGRP-LB, a catalytic member of the PGRP family. We show that PGRP-LB is a secreted protein regulated by the Imd pathway. Biochemical studies demonstrate that PGRP-LB is an amidase that specifically degrades gram-negative bacteria peptidoglycan. In agreement with its amidase activity, PGRP-LB downregulates the Imd pathway. Hence, activation of PGRP-LB by the Imd pathway provides a negative feedback regulation to tightly adjust immune activation to infection. Our study also reveals that PGRP-LB controls the immune reactivity of flies to the presence of ingested bacteria in the gut. Our work highlights the key role of PGRPs that encode both sensors and scavengers of peptidoglycan, which modulate the level of the host immune response to the presence of infectious microorganisms

    Drosophila Immunity: Analysis of PGRP-SB1 Expression, Enzymatic Activity and Function

    Get PDF
    Peptidoglycan is an essential and specific component of the bacterial cell wall and therefore is an ideal recognition signature for the immune system. Peptidoglycan recognition proteins (PGRPs) are conserved from insects to mammals and able to bind PGN (non-catalytic PGRPs) and, in some cases, to efficiently degrade it (catalytic PGRPs). In Drosophila, several non-catalytic PGRPs function as selective peptidoglycan receptors upstream of the Toll and Imd pathways, the two major signalling cascades regulating the systemic production of antimicrobial peptides. Recognition PGRPs specifically activate the Toll pathway in response to Lys-type peptidoglycan found in most Gram-positive bacteria and the Imd pathway in response to DAP-type peptidoglycan encountered in Gram-positive bacilli-type bacteria and in Gram-negative bacteria. Catalytic PGRPs on the other hand can potentially reduce the level of immune activation by scavenging peptidoglycan. In accordance with this, PGRP-LB and PGRP-SC1A/B/2 have been shown to act as negative regulators of the Imd pathway. In this study, we report a biochemical and genetic analysis of PGRP-SB1, a catalytic PGRP. Our data show that PGRP-SB1 is abundantly secreted into the hemolymph following Imd pathway activation in the fat body, and exhibits an enzymatic activity towards DAP-type polymeric peptidoglycan. We have generated a PGRP-SB1/2 null mutant by homologous recombination, but its thorough phenotypic analysis did not reveal any immune function, suggesting a subtle role or redundancy of PGRP-SB1/2 with other molecules. Possible immune functions of PGRP-SB1 are discussed

    What can a weevil teach a fly, and reciprocally? Interaction of host immune systems with endosymbionts in Glossina and Sitophilus

    No full text
    Abstract The tsetse fly (Glossina genus) is the main vector of African trypanosomes, which are protozoan parasites that cause human and animal African trypanosomiases in Sub-Saharan Africa. In the frame of the IAEA/FAO program ‘Enhancing Vector Refractoriness to Trypanosome Infection’, in addition to the tsetse, the cereal weevil Sitophilus has been introduced as a comparative system with regards to immune interactions with endosymbionts. The cereal weevil is an agricultural pest that destroys a significant proportion of cereal stocks worldwide. Tsetse flies are associated with three symbiotic bacteria, the multifunctional obligate Wigglesworthia glossinidia, the facultative commensal Sodalis glossinidius and the parasitic Wolbachia. Cereal weevils house an obligatory nutritional symbiosis with the bacterium Sodalis pierantonius, and occasionally Wolbachia. Studying insect host-symbiont interactions is highly relevant both for understanding the evolution of symbiosis and for envisioning novel pest control strategies. In both insects, the long co-evolution between host and endosymbiont has led to a stringent integration of the host-bacteria partnership. These associations were facilitated by the development of specialized host traits, including symbiont-housing cells called bacteriocytes and specific immune features that enable both tolerance and control of the bacteria. In this review, we compare the tsetse and weevil model systems and compile the latest research findings regarding their biological and ecological similarities, how the immune system controls endosymbiont load and location, and how host-symbiont interactions impact developmental features including cuticle synthesis and immune system maturation. We focus mainly on the interactions between the obligate symbionts and their host’s immune systems, a central theme in both model systems. Finally, we highlight how parallel studies on cereal weevils and tsetse flies led to mutual discoveries and stimulated research on each model, creating a pivotal example of scientific improvement through comparison between relatively distant models

    An IMD-like pathway mediates both endosymbiont control and host immunity in the cereal weevil Sitophilus spp.

    Get PDF
    Abstract Many insects developing on nutritionally unbalanced diets have evolved symbiotic associations with vertically transmitted intracellular bacteria (endosymbionts) that provide them with metabolic components, thereby improving the host’s abilities to thrive on such poor ecological niches. While host-endosymbiont coevolutionary constraints are known to entail massive genomic changes in the microbial partner, host’s genomic evolution remains elusive, particularly with regard to the immune system. In the cereal weevil Sitophilus spp., which houses Sodalis pierantonius, endosymbionts are secluded in specialized host cells, the bacteriocytes that group together as an organ, the bacteriome. We previously reported that at standard conditions, the bacteriome highly expresses the coleoptericin A (colA) antimicrobial peptide (AMP), which was shown to prevent endosymbiont escape from the bacteriocytes. However, following the insect systemic infection by pathogens, the bacteriome upregulates a cocktail of AMP encoding genes, including colA. The regulations that allow these contrasted immune responses remain unknown. In this short report, we provide evidence that an IMD-like pathway is conserved in two sibling species of cereal weevils, Sitophilus oryzae and Sitophilus zeamais. RNA interference (RNAi) experiments showed that imd and relish genes are essential for (i) colA expression in the bacteriome under standard conditions, (ii) AMP up-regulation in the bacteriome following a systemic immune challenge, and (iii) AMP systemic induction following an immune challenge. Histological analyses also showed that relish inhibition by RNAi resulted in endosymbiont escape from the bacteriome, strengthening the involvement of an IMD-like pathway in endosymbiont control. We conclude that Sitophilus’ IMD-like pathway mediates both the bacteriome immune program involved in endosymbiont seclusion within the bacteriocytes and the systemic and local immune responses to exogenous challenges. This work provides a striking example of how a conserved immune pathway, initially described as essential in pathogen clearance, also functions in the control of mutualistic associations

    Functional Analysis of PGRP-LA in Drosophila Immunity

    Get PDF
    International audiencePeptidoGlycan Recognition Proteins (PGRPs) are key regulators of the insect innate antibacterial response. Even if they have been intensively studied, some of them have yet unknown functions. Here, we present a functional analysis of PGRP-LA, an as yet uncharacterized Drosophila PGRP. The PGRP-LA gene is located in cluster with PGRP-LC and PGRP-LF, which encode a receptor and a negative regulator of the Imd pathway, respectively. Structure predictions indicate that PGRP-LA would not bind to peptidoglycan, pointing to a regulatory role of this PGRP. PGRP-LA expression was enriched in barrier epithelia, but low in the fat body. Use of a newly generated PGRP-LA deficient mutant indicates that PGRP-LA is not required for the production of antimicrobial peptides by the fat body in response to a systemic infection. Focusing on the respiratory tract, where PGRP-LA is strongly expressed, we conducted a genome-wide microarray analysis of the tracheal immune response of wild-type, Relish, and PGRP-LA mutant larvae. Comparing our data to previous microarray studies, we report that a majority of genes regulated in the trachea upon infection differ from those induced in the gut or the fat body. Importantly, antimicrobial peptide gene expression was reduced in the tracheae of larvae and in the adult gut of PGRP-LA-deficient Drosophila upon oral bacterial infection. Together, our results suggest that PGRP-LA positively regulates the Imd pathway in barrier epithelia

    Phosphothioate oligodeoxynucleotides inhibit Plasmodium sporozoite gliding motility

    No full text
    © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing LtdPlasmodium sporozoites, transmitted to the mammalian host through a mosquito bite, travel to the liver, where they invade hepatocytes, and develop into a form that is then able to infect red blood cells. In spite of the importance of innate immunity in controlling microbial infections, almost nothing is known about its role during the liver stage of a malaria infection. Here, we tested whether synthetic CpG phosphothioate (PS) oligodeoxynucleotides (ODNs), which bind to Toll-like receptor 9 (Tlr9), could have a protective effect on Plasmodium berghei infection in hepatocytes. Surprisingly, CpG PS-ODNs potently impair P. berghei infection in hepatoma cell lines independently of Tlr9 activation. Indeed, not only CpG but also non-CpG PS-ODNs, which do not activate Tlr9, decreased parasite infection. Moreover, the ability of PS-ODNs to impair infection was not due to an effect on the host but rather on the parasite itself. In fact, CpG PS-ODNs, as well as non-CpG PS-ODNs, impair parasite gliding motility. Furthermore, our analysis reveals that PS-ODNs inhibit parasite migration and invasion due to their negative charge, whereas development inside hepatocytes is undisturbed. Altogether, PS-ODNs might represent a new class of prophylactic anti-malaria agents, which hamper hepatocyte entry by Plasmodium sporozoites.This work was funded by Fundação para a Ciência e Tecnologia (FCT) of the Portuguese Ministry of Science (Grant PTDC/BIA-MIC/72211/2006) and European Science Foundation (EURYI). P.L. was supported by Fondation pour la Recherche Médicale and FCT. A.R.F. and A.Z.R. were supported by FCT fellowships. M.M.M. is a Howard Hughes Medical Institute International Scholar and a BioMalPar-affiliated member.info:eu-repo/semantics/publishedVersio

    <i>PGRP-LA<sub>D</sub></i> over-expression leads to induction of the Imd pathway.

    No full text
    <p><b>A.</b> Measurement of <i>Diptericin</i> (<i>Dpt</i>) by RT-qPCR in whole males over-expressing each isoform of <i>PGRP-LA</i> under the control of the ubiquitous <i>da-Gal4</i> driver, using <i>UAS-PGRP-LA<sub>C</sub></i> (<i>LA<sub>C</sub></i>), <i>UAS-PGRP-LA<sub>D</sub></i> (<i>LA<sub>D</sub></i>) and <i>UAS-PGRPLA<sub>F</sub></i> (<i>LA<sub>F</sub></i>) transgenes. <b>B.</b> Measurement of <i>Dpt</i> by RT-qPCR in <i>PGRP-LC</i>, <i>Dredd</i>, or <i>Tak1</i>-deficient whole males over-expressing <i>PGRP-LA<sub>D</sub></i> under the control of the ubiquitous <i>da-Gal4</i> driver. Results are shown as fold change of <i>Dpt</i> expression versus wild-type (+) unchallenged controls. Data are expressed as a percentage of <i>Dpt/RpL32</i> 6 h after septic injury (SI) and are the mean of three experiments; error bars indicate standard errors. In <b>A</b>, <b>B</b>, data were analyzed by ANOVA1 followed by Dunnett's multiple comparison test using wt (i.e. da-Gal4 x w) (<b>A</b>) and wt (SI) (<b>B</b>) as references (a and b groups are statistically different, p<0.01 (<b>A</b>) and p<0.05 (<b>B</b>)).</p
    corecore