38 research outputs found

    Cognitive, Neural, and Educational Contributions to Mathematics Performance: A Closer Look at the Roles of Numerical and Spatial Skills

    Get PDF
    The principal aims of this thesis were to (1) provide new insights into the cognitive and neural associations between spatial and mathematical abilities, and (2) translate and apply findings from the field of numerical cognition to the teaching and learning of early mathematics. Study 1 investigated the structure and interrelations amongst cognitive constructs related to numerical, spatial, and executive function (EF) skills and mathematics achievement in 4- to 11-year old children (N=316). Results revealed evidence of highly related, yet separable, cognitive constructs. Together, numerical, spatial, and EF skills explained 84% of the variance in mathematics achievement (controlling for chronological age). Only numerical and spatial skills, but not EF, were unique predictors of mathematics performance. Spatial visualization was an especially strong predictor of mathematics. Study 2 examined where and under what conditions spatial and numerical skills converge and diverge in the brain. An fMRI meta-analysis was performed to identify brain regions associated with basic symbolic number processing, mental arithmetic, and mental rotation. All three cognitive processes were associated with activity in and around the bilateral intraparietal sulcus (IPS). There was also evidence of overlap between symbolic number and arithmetic in the left IPS and overlap between mental rotation and arithmetic in the middle frontal gyri. Together, these findings provide a process-based account of common and unique relations between spatial and numerical cognition. Study 3 addressed the research-to-practice gap in the areas of numerical cognition research and mathematics education. A 25-hour Professional Development (PD) model for teachers of Kindergarten–3rd Grade was designed, implemented, and tested. Results indicated that the PD was effective at increasing teachers’ self-perceived numerical cognition knowledge and students’ general numeracy skills. However, there were notable differences in the effects of the PD across the two sites studied, with much stronger effects at one site than the other. Thus, critical questions remain as to when and why the model may be effective in some school contexts but not others. Together, these studies contribute to an improved understanding of the underlying relations amongst spatial, numerical, and mathematical skills and a viable new approach to better integrate research and practice

    Symbols Are Special: An fMRI Adaptation Study of Symbolic, Nonsymbolic, and Non-Numerical Magnitude Processing in the Human Brain

    Get PDF
    How are different formats of magnitudes represented in the human brain? We used functional magnetic resonance imaging adaptation to isolate representations of symbols, quantities, and physical size in 45 adults. Results indicate that the neural correlates supporting the passive processing of number symbols are largely dissociable from those supporting quantities and physical size, anatomically and representationally. Anatomically, passive processing of quantities and size correlate with activation in the right intraparietal sulcus, whereas symbolic number processing, compared with quantity processing, correlates with activation in the left inferior parietal lobule. Representationally, neural patterns of activation supporting symbols are dissimilar from neural activation patterns supporting quantity and size in the bilateral parietal lobes. These findings challenge the longstanding notion that the culturally acquired ability to conceptualize symbolic numbers is represented using entirely the same brain systems that support the evolutionarily ancient system used to process quantities. Moreover, these data reveal that regions that support numerical magnitude processing are also important for the processing of non-numerical magnitudes. This discovery compels future investigations of the neural consequences of acquiring knowledge of symbolic numbers

    Disentangling the individual and contextual effects of math anxiety: A global perspective

    Get PDF
    Math anxiety is a common affective disorder in students that is characterized by intrusive thoughts that disrupt critical cognitive resources required for math problem-solving. Consistent associations between math anxiety and math achievement have been observed across countries and age groups, placing math anxiety among other important correlates of math achievement, such as socioeconomic status and magnitude representation ability. However, studies examining math anxiety\u27s relation to achievement have largely focused on the effect of students\u27 own math anxiety (individual effect), while little is known regarding the effect of math anxiety in students\u27 educational context (contextual effect). Using three international studies of achievement (n = 1,175,515), we estimated both the individual and contextual effects of math anxiety across the globe. Results suggest that while there are consistent individual effects in virtually all countries examined, the contextual effects are varied, with only approximately half of the countries exhibiting a contextual effect. Additionally, we reveal that teacher confidence in teaching math is associated with a reduction of the individual effect, and country\u27s level of uncertainty avoidance is related to a lessening of the contextual effect. Finally, we uncovered multiple predictors of math anxiety; notably, student perception of teacher competence was negative related with math anxiety, and parental homework involvement was positively related with math anxiety. Taken together, these results suggest that there are significant between-country differences in how math anxiety may be related with math achievement and suggest that education and cultural contexts as important considerations in understanding math anxiety\u27s effects on achievement

    Number symbols are processed more automatically than nonsymbolic numerical magnitudes: Findings from a Symbolic-Nonsymbolic Stroop task

    Get PDF
    Are number symbols (e.g., 3) and numerically equivalent quantities (e.g., •••) processed similarly or distinctly? If symbols and quantities are processed similarly then processing one format should activate the processing of the other. To experimentally probe this prediction, we assessed the processing of symbols and quantities using a Stroop-like paradigm. Participants (NStudy1 = 80, NStudy2 = 63) compared adjacent arrays of symbols (e.g., 4444 vs 333) and were instructed to indicate the side containing either the greater quantity of symbols (nonsymbolic task) or the numerically larger symbol (symbolic task). The tasks included congruent trials, where the greater symbol and quantity appeared on the same side (e.g. 333 vs. 4444), incongruent trials, where the greater symbol and quantity appeared on opposite sides (e.g. 3333 vs. 444), and neutral trials, where the irrelevant dimension was the same across both sides (e.g. 3333 vs. 333 for nonsymbolic; 333 vs. 444 for symbolic). The numerical distance between stimuli was systematically varied, and quantities in the subitizing and counting range were analyzed together and independently. Participants were more efficient comparing symbols and ignoring quantities, than comparing quantities and ignoring symbols. Similarly, while both symbols and quantities influenced each other as the irrelevant dimension, symbols influenced the processing of quantities more than quantities influenced the processing of symbols, especially for quantities in the counting rage. Additionally, symbols were less influenced by numerical distance than quantities, when acting as the relevant and irrelevant dimension. These findings suggest that symbols are processed differently and more automatically than quantities

    Making the Executive ‘Function’ for the Foundations of Mathematics: the Need for Explicit Theories of Change for Early Interventions

    Get PDF
    A vast body of work highlights executive functions (EFs) as robust correlates of mathematics achievement over the primary and preschool years. Yet, despite such correlational evidence, there is limited evidence that EF interventions yield improvements in early years mathematics. As intervention studies are a powerful tool to move beyond correlation to causality, failures of transfer from executive functions interventions are, we argue, highly problematic for both applied and theoretical reasons. We review the existing correlational and intervention literature at complementary neuroscientific, cognitive, developmental and educational levels. We appraise distinct theories of change underpinning the correlations between EF and early mathematics, as well as explicit or implicit theories of change for different types of EF interventions. We find that isolated EF interventions are less likely to transfer to improvements in mathematics than integrated interventions. Via this conceptual piece, we highlight that the field of EF development is in need of (1) a clearer framework for the mechanisms underpinning the relationships between early EF and other developing domains, such as mathematical cognition; (2) clearer putative theories of change for how interventions of different kinds operate in the context of EF and such domains; (3) and greater clarity on the developmental and educational contexts that influence these causal associations. Our synthesis of the evidence emphasises the need to consider the dynamic development of EFs with co-developing cognitive functions, such as early math skills, when designing education environments

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    What explains the relationship between spatial and mathematical skills? A review of evidence from brain and behavior

    No full text
    There is an emerging consensus that spatial thinking plays a fundamental role in how people conceive, express, and perform mathematics. However, the underlying nature of this relationship remains elusive. Questions remain as to how, why, and under what conditions spatial skills and mathematics are linked. This review paper addresses this gap. Through a review and synthesis of research in psychology, neuroscience, and education, we examine plausible mechanistic accounts for the oft-reported close, and potentially causal, relations between spatial and mathematical thought. More specifically, this review targets candidate mechanisms that link spatial visualization skills and basic numerical competencies. The four explanatory accounts we describe and critique include the: (1) Spatial representation of numbers account, (2) shared neural processing account, (3) spatial modelling account, and (4) working memory account. We propose that these mechanisms do not operate in isolation from one another, but in concert with one another to give rise to spatial-numerical associations. Moving from the theoretical to the practical, we end our review by considering the extent to which spatial visualization abilities are malleable and transferrable to numerical reasoning. Ultimately, this paper aims to provide a more coherent and mechanistic account of spatial-numerical relations in the hope that this information may (1) afford new insights into the uniquely human ability to learn, perform, and invent abstract mathematics, and (2) on a more practical level, prove useful in the assessment and design of effective mathematics curricula and intervention moving forward

    Kindergarten children\u27s symbolic number comparison skills predict 1st grade mathematics achievement: Evidence from a two-minute paper-and-pencil test

    No full text
    © 2018 Elsevier Ltd Basic numerical skills provide an important foundation for the learning of mathematics. Thus, it is critical that researchers and educators have access to valid and reliable ways of assessing young children\u27s numerical skills. The purpose of this study was to evaluate the concurrent, predictive, and incremental validity of a two-minute paper-and-pencil measure of children\u27s symbolic (Arabic numerals) and non-symbolic (dot arrays) comparison skills. A sample of kindergarten children (Mage = 5.86, N = 439) were assessed on the measure along with a number line estimation task, a measure of arithmetic, and several control measures. Results indicated that performance on the symbolic comparison task explained unique variance in children\u27s arithmetic performance in kindergarten. Longitudinal analyses demonstrated that both symbolic comparison and number line estimation in kindergarten were independent predictors of 1st grade mathematics achievement. However, only symbolic comparison remained a unique predictor once language skills and processing speed were taken into account. These results suggest that a two-minute paper-and-pencil measure of children\u27s symbolic number comparison is a reliable predictor of children\u27s early mathematics performance
    corecore