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Abstract 
 

The principal aims of this thesis were to (1) provide new insights into the cognitive and 

neural associations between spatial and mathematical abilities, and (2) translate and apply 

findings from the field of numerical cognition to the teaching and learning of early 

mathematics.  

Study 1 investigated the structure and interrelations amongst cognitive constructs 

related to numerical, spatial, and executive function (EF) skills and mathematics 

achievement in 4- to 11-year old children (N=316). Results revealed evidence of highly 

related, yet separable, cognitive constructs. Together, numerical, spatial, and EF skills 

explained 84% of the variance in mathematics achievement (controlling for chronological 

age). Only numerical and spatial skills, but not EF, were unique predictors of mathematics 

performance. Spatial visualization was an especially strong predictor of mathematics.  

Study 2 examined where and under what conditions spatial and numerical skills 

converge and diverge in the brain.  An fMRI meta-analysis was performed to identify 

brain regions associated with basic symbolic number processing, mental arithmetic, and 

mental rotation. All three cognitive processes were associated with activity in and around 

the bilateral intraparietal sulcus (IPS). There was also evidence of overlap between 

symbolic number and arithmetic in the left IPS and overlap between mental rotation and 

arithmetic in the middle frontal gyri. Together, these findings provide a process-based 

account of common and unique relations between spatial and numerical cognition.   

Study 3 addressed the research-to-practice gap in the areas of numerical cognition 

research and mathematics education. A 25-hour Professional Development (PD) model 

for teachers of Kindergarten–3rd Grade was designed, implemented, and tested. Results 

indicated that the PD was effective at increasing teachers’ self-perceived numerical 

cognition knowledge and students’ general numeracy skills. However, there were notable 

differences in the effects of the PD across the two sites studied, with much stronger 

effects at one site than the other. Thus, critical questions remain as to when and why the 

model may be effective in some school contexts but not others.  
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 Together, these studies contribute to an improved understanding of the underlying 

relations amongst spatial, numerical, and mathematical skills and a viable new approach 

to better integrate research and practice. 

 
Keywords 

Numerical cognition, spatial cognition, mathematical cognition, mathematics education, 

spatial skills, numerical skills, spatial visualization, fMRI, teacher Professional 

Development (PD) 
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Summary for Lay Audience 

In the last two decades, research has revealed just how important mathematics is for 

school and occupational success, but also one’s opportunities to live a healthy and happy 

life. Indeed, there is a growing need to better understand factors that influence and 

contribute to mathematical thinking and development. The current thesis addresses this 

objective by focusing on how cognitive competencies, namely numerical and spatial 

skills, contribute to mathematical learning and performance.  

 Study 1 examines how numerical, spatial, and executive functioning (i.e., working 

memory, attention, and inhibitory control) skills relate to one another and predict 

children’s (4-11 year olds) mathematics achievement. Results indicated strong 

connections between all cognitive skills. Mathematics performance was predicted by both 

numerical and spatial skills, but not executive function skills. Spatial visualization skill 

(i.e., the ability to form and manipulate mental images) was found to be an especially 

strong predictor of mathematics achievement.  

 Study 2 investigates which brain regions underlie numerical and spatial reasoning. 

An fMRI meta-analysis was performed to identify brain regions associated with basic 

symbolic number processing (e.g., comparing the larger of two numbers), mental 

arithmetic, and mental rotation (e.g., judging objects as the same or different despite 

being presented at different orientations). Results revealed large areas of overlap in and 

around the bilateral intraparietal sulcus (IPS), as well as regions in the left IPS potentially 

more sensitive to numerical processes and regions in the prefrontal cortex potentially 

more sensitive to domain-general manipulation (mental manipulation of numbers and/or 

objects). 

Study 3 concerns the design, implementation, and effectiveness of a new model of 

Professional Development (PD) for Kindergarten—3rd Grade teachers. Central to the 

model is the goal of better integrating numerical cognition research with the teaching and 

learning of early mathematics. The results revealed evidence that the model was effective 

at improving teachers’ self-perceived knowledge of numerical cognition research and 

students’ general numeracy skills. However, there was also evidence that model worked 

better at one school compared to another, indicating the need for further research.  
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Together, the current PhD provides new insights into the ways in which cognitive 

skills and educational experiences influence mathematical thought. 
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Chapter 1  

1 General Introduction  
 

The overarching goal of this thesis is to contribute to an improved understanding of 

mathematical thinking and learning. To approach this goal, I carried out three studies. In 

the first two studies, I aim to provide new insights into the cognitive and neural 

associations between spatial and mathematical abilities. In my third and final study, I 

focus on the issue of knowledge translation. I describe a study designed to bridge the gap 

between research in numerical cognition and the teaching and learning of early years 

mathematics.  

  The central problem addressed in Studies 1 and 2 concerns the question of why 

and under what conditions spatial and mathematical thinking are linked. Over a century of 

empirical research has demonstrated close relations between spatial and mathematical 

reasoning (Galton, 1881; Mix & Cheng, 2012). According to a recent review on the topic, 

“the connection between space and math may be one of the most robust and well-

established findings in cognitive psychology” (Mix & Cheng, 2012, p. 198). Yet, only 

recently have researchers begun to ask the question how and why numerical, spatial, and 

mathematical abilities tend to be highly correlated. The mechanisms that link spatial and 

mathematical reasoning remain poorly understood. Studies 1 and 2 aims to address this 

gap in the literature. As described further below, each study was designed to test a set of 

novel hypotheses aimed to further reveal ways in which spatial, numerical, and 

mathematical thinking may be linked in both behavior and in the brain. The following 

questions remain poorly understood and are the subject of Studies 1 and 2:  

 

(i) To what extent is the relation between spatial and mathematical abilities 

explained by another variable, such as working memory or general 

intelligence? For example, it is possible that spatial abilities are essentially a 

proxy for other high-order cognitive skills.  
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(ii) If spatial skills are a unique contributor to mathematics abilities, why might 

this be? What is it about spatial processing that facilitates mathematics 

learning and performance?  

  

(iii) Are spatial skills, namely spatial visualization, more strongly related to 

novel mathematical content compared to highly familiar content?  

 

(iv) How do spatial, numerical, and mathematical abilities relate to one another 

at the neural level? Do they rely on similar mechanisms?  

 

(v) To what extent are spatial and mathematical processes associated in the 

brain as a function of the mental operations that are shared and/or distinct 

between them? For example, might we expect to see overlap between 

mental rotation (a measure of spatial ability) and mental arithmetic, but not 

basic numerical representations, in regions sensitive to object mental 

manipulation?  

 

A better understanding of the space-math link is important for two main reasons. 

First, by better understanding the underlying nature of the space-math link, we may be 

afforded new insights and a richer understanding of the cognitive underpinnings of 

mathematical thought. More specially, by uncovering when and under what specific 

conditions spatial and mathematical cognition are linked, we gain further knowledge into 

the potential role(s) that spatial abilities play in mathematics learning and development. 

For example, as hypothesized and addressed in Study 1, there is reason to believe that 

spatial abilities, spatial visualization skills in particular, play an especially important role 

in the learning of unfamiliar mathematical content. With mastery and automaticity (e.g., 

arithmetic fact retrieval), spatial skills are predicted to play less of a role. This point 

directly relates to the second reason why uncovering the space-math link is an important 

endeavor; the findings have the potential to inform mathematics education. It is not 

enough to say that spatial abilities are highly correlated with mathematics achievement. 

To fully leverage this relation, educators need to know when, why, and how spatial skills 
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are related to mathematics performance and, more specifically, the ways in which spatial 

instruction may stand to benefit mathematics learning. Although progress towards this 

goal will undoubtedly be a slow process, it is also a critically important one in the effort 

to improve our understanding of mathematical learning and instruction.  

The central problem addressed in Study 3 concerns the research-to-practice gap in 

the area of numerical cognition and mathematics education. That is, how can we take 

research findings from the field of numerical cognition and translate and apply them to 

the classroom? As a discipline, numerical cognition involves the interdisciplinary study of 

the cognitive, developmental, and neural bases of numerical and mathematical thought. 

And while the knowledge generated from this field of study has the potential to inform 

mathematics education, this is seldom the case. Instead, numerical cognition research and 

mathematics education are siloed from one another. Why is this? One reason is that there 

is currently no infrastructure or mechanism in place that supports and facilitates 

opportunities for collaborative, productive, and iterative exchange between the disciplines 

of numerical cognition and mathematics education. To date, there has been an impressive 

body of literature espousing the need for why stronger connections should exist between 

disciplines (e.g., see De Smedt, Ansari, Grabner, Hannula-Sormunen, Schneider, & 

Verschaffel, 2011). However, as of yet, there is little indication as to how to forge better 

connections between numerical cognition and mathematics education.    

Study 3 presents a model of teacher Professional Development specifically 

designed to address this problem. In brief, the model involves a structured approach to 

bringing researchers and educators together to work towards applying research from 

numerical cognition to classroom practice. Educators are presented with key ideas from 

the numerical cognition literature (e.g., foundations of number, number-space mappings, 

arithmetic strategies) and provided with time and resources to transform the ideas into 

actual lessons and activities for their own students (Kindergarten – Grade 3). This study 

represents a first of its kind and presents an important case study on the feasibility and 

findings associated with integrating numerical cognition research and mathematics 

education.   
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1.1     Overview of Upcoming Sections 

With the above goals in mind, the remainder of the Introduction provides a more detailed 

literature review of the primary objectives of the current dissertation. In reviewing the 

literature, I identify where gaps in knowledge exist and briefly describe how my studies 

attempt to address these gaps. I begin by operationalizing numerical and spatial skills and 

then propose four candidate mechanisms for how, why, and when spatial and 

numerical/mathematical reasoning may be related. Moreover, I identify where our 

knowledge of spatial-mathematical relations falls short and briefly describe how Studies 1 

and 2 address these gaps. Moving from the theoretical to the more practical, I then shift 

focus and discuss the need for knowledge translation in the area of numerical cognition. 

Lastly, I end the Introduction by providing an overview of the main questions addressed 

across all three of my empirical studies (Studies 1-3).  

1.2     Relations between Spatial and Mathematical Skills 

The mapping of numbers to space is central to how we operationalize, learn, and do 

mathematics (Lakoff & Núñez, 2000). From a historical perspective, it is difficult, if not 

impossible, to sift through the major discoveries in mathematics without acknowledging 

the central importance placed on the mapping of numbers to space. For example, the 

Pythagorean Theorem, the Cartesian coordinate system (mapping in general), Euclid’s 

Elements, the real number line, and Cavalieri's principle are but a few famous examples 

of numerical-spatial mappings (Davis, 2015). More ubiquitous examples include the 

measurement of time and various other everyday quantities (e.g., cooking ingredients). 

Mathematical instruments as well as measurement devices are in themselves a testament 

to the widespread application of mapping numbers to space. These examples include the 

abacus, number line, clock, and ruler. To flip through any mathematical textbook is to 

further reveal the intimate relations between numbers and space. Diagrams, graphs, and 

various other visual-spatial illustrations fill the pages and serve to communicate and 

improve mathematical understanding.  

 From these examples, it is clear that numbers and space interact in important 

ways. But how is it that these spatial-numerical associations come to be in the first place? 
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What are the cognitive processes that underlie our uniquely human ability to derive the 

Pythagorean Theorem or to invent concepts and tools to measure the world around us? In 

both Study 1 and 2, I ask what role spatial abilities might play in numerical and 

mathematical reasoning. More specifically, I focus on the ways in which spatial 

visualization is related to numerical and mathematical competencies.  

 

1.2.1     Spatial Visualization Skills      
 

Although many spatial skills have been identified (e.g., navigation skills, memory for 

location), spatial visualization skills appear to be especially related to mathematical 

thinking (Mix & Cheng, 2012). For example, there is little evidence (to date) to suggest 

that spatial navigation skills relate to mathematics abilities. In contrast, there is well over 

a century of research linking spatial visualization and mathematics (Davis, 2015; Galton, 

1880; Mix & Cheng, 2012). Broadly defined here as the ability to generate, recall, 

maintain, and manipulate visual-spatial images and solutions (Lohman, 1996; see Figure 

1.1), spatial visualization has been reported to play a critical role in mathematical and 

scientific discovery and innovation. For example, the discovery of the structure of DNA, 

the Theory of Relativity, the Periodic table, and the invention of the induction motor are 

all said to have been borne out of spatial visualization (Davis, 2015; Moss, Bruce, 

Caswell, Flynn, & Hawes, 2016; Newcombe, 2010). According to famed mathematician 

Jacques Hadamard (1945), mathematical discoveries first present themselves in the form 

of intuitions and visual-spatial imagery. Only then does one engage in the more arduous 

and time-consuming work of testing the veracity of one’s imaginings through formal and 

symbolic logic. This theory is perhaps best articulated by Albert Einstein, who in a letter 

to Hadamard, wrote: 

 

The words or language, as they are written or spoken, do not seem to play any 
role in my mechanism of thought. The physical entities which seem to serve as 
elements in thought are certain signs and more or less clear images which can 
be “voluntarily” reproduced and combined. …Conventional words or other 
signs have to be sought for laboriously only in a secondary stage, when the 
mentioned associative play is sufficiently established and can be reproduced at 
will (Einstein, quoted in Hadamard, 1945, p. 142–143).   
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Critically, Einstein is not alone in describing his thought process in this way. 

Many other mathematicians and scientists, including Poincaré, van’t Hoff, and Pasteur, 

have offered similar introspective accounts (Hadamard, 1945; Root-Bernstein, 1985). 

These anecdotal accounts provide important, but far from conclusive, accounts of the 

role(s) that spatial visualization might play in mathematical discovery. But what does the 

empirical evidence suggest? Further, and more to the point, what role do spatial 

visualization skills play in the learning and performance of school-based mathematics?  

In terms of mathematical and scientific discovery and innovations, there is 

longitudinal support for strong predictive relations (Wai, Lubinski, & Benbow, 2009). For 

example, in a nationally representative sample of U.S. high school students (N = 

400,000), it was found that spatial visualization abilities predicted which students 

enjoyed, entered, and succeeded in STEM disciplines (science, technology, engineering, 

and mathematics), even after taking verbal and quantitative competencies into account 

(Wai, Lubinksi, & Benbow, 2009). Follow-up studies of this same sample further 

demonstrated that spatial visualization skills predicted creativity and innovation in the 

workplace, suggesting that there may be some truth to the anecdotal reports noted above 

(Kell, Lubinski, Benbow, & Steiger, 2013).   

 Consistent and robust correlations have been reported between spatial 

visualization skills and a breadth of mathematical tasks (Mix & Cheng, 2012). For 

example, spatial visualization skills have been linked to performance in geometry 

(Delgado & Prieto, 2004), algebra (Tolar, Lederberg, & Fletcher, 2009), numerical 

estimation (Tam, Wong, & Chan, 2019), word problems (Hegarty & Kozhevnikov, 1999), 

mental arithmetic (Kyttälä & Lehto, 2008), and advanced mathematics (e.g., function 

theory, mathematical logic, computational mathematics; Wei, Yuan, Chen, & Zhou, 2012). 

Figure 1.1 presents a few examples of the types of measures that are typically used to 

capture individual differences in spatial visualization skills.  
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Figure 1.1   Examples of measures used to capture individual differences in spatial 

visualization skills. 

1.2.2     Basic Numerical Skills  
 

In addition to spatial visualization, basic numerical skills represent another key construct 

explored in detail throughout this dissertation. Like spatial visualization, basic numerical 

skill is often thought of as constellation of related subskills, including the ability to 

compare and order numbers, perform arithmetic, and answer numerical word problems 

(see Figure 1.2 for examples). In brief, numerical skills typically refer to an understanding 
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of number symbols and their various relations and applications. As further discussed in 

detail below, the relation between spatial visualization and basic numerical skills is an 

interesting one in that the relations are not overtly obvious. While many branches of 

mathematics are inherently spatial, including geometry and measurement, the same 

cannot so easily be said of the most basic of mathematical entities and operations: 

numbers and arithmetic. Indeed, the question of why spatial visualization skills are linked 

to basic numerical competencies remains poorly understood.  

 
Figure 1.2   Examples of measures used to capture individual differences in numerical 

reasoning.  
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1.2.3     Mathematics Performance  

Definitions of mathematics vary and continue to change as new branches of mathematics 

and its applications are invented. For this reason, mathematics is difficult, if not 

impossible, to define. However, in very general terms, definitions of mathematics range 

from “the study of objects and their relations” (retrieved form Wikipedia, December 

2017) to “the science of structure, order, and relation that has evolved from elemental 

practices of counting, measuring, and describing the shapes of objects” (retrieved from 

Encyclopaedia Britannica, June 2019). Given the difficulty in defining mathematics, it is 

even more important that when studying mathematics performance that we operationalize 

the specific domain or feature of mathematics under study. Moreover, because 

mathematics is not a unitary construct, the relation between spatial thinking and basic 

numerical skills have with mathematics performance and achievement is complex and 

likely changes as function of the mathematical task under investigation. One’s 

experiences with mathematics is also likely to change the contributions of spatial and 

numerical skills to performance. In the present PhD, mathematics is operationalized 

according to school-based mathematics descriptions, including arithmetic, numeration, 

and geometry. I also make distinctions between novel vs. familiar mathematics, in the 

effort to elucidate the ways in which spatial and numerical skills may differentially relate 

to mathematics dependent on experience with the maths task at hand. 

 

1.3     Explanations for Relations between Spatial and 

Mathematical Skills: A Review of Four Candidate 

Mechanisms  

As already mentioned above, there is clear evidence for strong relations between spatial 

and mathematical skills. However, the underlying nature of this relationship remains 

elusive. Questions remain as to how, why, and under what conditions spatial skills and 

mathematics are linked. The following quote not only speaks to this point, but also makes 

it clear why we should care about this area of study:   
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The relation between spatial ability and mathematics is so well established that 
it no longer makes sense to ask whether they are related. Rather, we need to 
know why the two are connected—the causal mechanisms and shared 
processes—for this relation to be fully leveraged by educators and clinicians 
(Mix & Cheng, 2012, p. 206).  

 

In response to this need, the remainder of this section is directed at reviewing the ways in 

which spatial and mathematical thinking may be linked. Through reviewing and 

synthesizing research across psychology, neuroscience, and education, I identify and 

examine four mechanistic accounts for the oft-reported close and potentially causal 

relations between spatial and mathematical thought. These four accounts include the: 1) 

Spatial representation of numbers account, 2) shared neural processing account, 3) 

spatial modelling account, and 4) working memory account. They are not mutually 

exclusive. For example, there is considerable overlap between the spatial representation 

of numbers account and the shared neural processing account. However, for ease of 

communication and in an attempt to best represent the research traditions from which 

these accounts originate, I present them as separate mechanisms. In describing these 

accounts, I identify outstanding questions and current knowledge gaps. Indeed, it is these 

knowledge gaps which form the basis of many of the questions addressed in Studies 1 and 

2. In other words, these four accounts of the space-math link provide the theoretical basis 

and motivations for carrying out my first two studies. I also return to these four accounts 

in the General Discussion section, referring to the four accounts to contextualize the 

findings from Study 1 and 2. Moreover, I suggest ways in which future research might 

further test and extend various aspects of the four accounts.  

 

1.3.1     Spatial Representations of Number Account 
 

Numbers are the building blocks of mathematics. For this reason, any association between 

spatial processing and numbers is of potential critical importance in the effort to better 

understand the robust link between spatial skills and mathematics performance. As 

reviewed next, there is a substantial body of research indicating that numbers may be 

represented spatially. According to a recent study on the subject, “spatial processing of 

numbers has emerged as one of the basic properties of humans’ mathematical thinking” 
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(Patro, Fischer, Nuerk, & Cress, 2016, pp. 126). However, it remains unclear whether and 

to what extent spatial representations of number may confer any advantages to learning 

and doing mathematics. Moreover, and most germane to the purposes of the current 

thesis, it is not well understood what role higher-level spatial skills, namely spatial 

visualization skills, may play in the spatial representation of numbers.  

 The idea that numbers might be represented spatially has origins in Sir Francis 

Galton’s mental imagery studies of the late 1800s (Galton, 1881). Galton provided the 

first evidence to suggest that numbers may be conceived as objects corresponding to 

specific positions in space:  

Those who are able to visualize a numeral with a distinctness comparable to 
reality, and to behold it as if it were before their eyes, and not in some sort 
of dreamland, will define the direction in which it seems to lie, and the 
distance at which it appears to be. If they were looking at a ship on the 
horizon at the moment that the figure 6 happened to present itself to their 
minds, they could say whether the image lay to the left or right of the ship, 
and whether it was above or below the line of the horizon; they could 
always point to a definite spot in space, and say with more or less precision 
that that was the direction in which the image of the figure they were 
thinking of first appeared. (1881, p. 86) 

 
Galton referred to such visualizations as number forms, noting that people’s descriptions 

of such visualizations varied according to their visual-spatial properties, including 

differences in orientation, color, brightness, and perceived weight (e.g., see Figure 1.3). 

Despite such differences, number forms were said to represent a reliable and stable trait 

within individuals.  

 
Figure 1.3   An example of how one of the participants in Galton’s study described their 

visualization of numbers.  



 

12 

 

Galton’s studies on number forms is important because it provided the first 

evidence that people may represent numbers in a spatial format; most typically from left-

to-right, akin to an actual number line. During the last several decades, considerable 

research efforts have followed-up on this possibility through a wide assortment of 

empirical investigation. Perhaps the most influential study in this regard is Dehaene and 

colleagues’ (1993) original findings on the SNARC effect (Spatial-Numerical 

Associations of Response Codes). In brief, the SNARC effect refers to the finding that 

people tend to automatically associate small number (e.g., 1, 2, 3) to the left side of space 

and larger numbers (e.g., 7, 8, 9) to the right side of space. People are faster and make 

fewer errors when making parity judgments (i.e., determine whether a number is even or 

odd) when using the left hand to make judgements about small numbers and use the right 

hand to make judgements about larger numbers. This finding has been interpreted as 

evidence for the existence of a ‘mental number line’: A metaphor used to describe the 

tendency for individuals from Western cultures to conceive numbers as ordered 

magnitudes along a left-to-right axis. Indeed, the ‘mental number line’ has been theorized 

to underlie a whole host of studies examining spatial-numerical associations (SNAs; e.g., 

see Toomarian & Hubbard, 2018). For example, line bisection tasks (Calabria & Rossetti, 

2005), spatial attention tasks (Fischer & Fias, 2005) and even random number generation 

are but a few examples of tasks said to reveal spatial-numerical biases, interpreted as 

support for the presence of a ‘mental number line’ (Loetscher, Bockisch, Nicholls, & 

Brugger, 2010). Arithmetic processing has also been suggested to induce automatic 

spatial-numerical biases (Knops, Viarouge, & Dehaene, 2009). For example, the 

operation-momentum effect refers to findings of left-right biases associated with addition 

and subtraction. Adult participants tend to overestimate answers to addition problems and 

underestimate answers to subtraction problems (McCrink, Dehaene, & Dehaene-

Lambertz, 2007). Even when no calculation is required the mere presence of the operators 

themselves (i.e., + and -) has been found to influence left-right spatial biases (Mathieu et 

al., 2017). Importantly, evidence suggests that SNAs are mediated through cultural and 

educational practices. For example, the SNARC effect is reversed in cultures that read 

from right-to-left (Shaki, Fischer, & Petrusic, 2009). Taken together, there is considerable 
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evidence to suggest that numerical thinking is related to spatial biases. These biases, in 

turn, have been taken as evidence of the ‘mental number line.’    

 Critically, the mental number line has been posited to underlie both 

automatic/unconscious processing of numbers as well as more effortful/conscious 

processing of numbers (Fischer & Fias, 2005; Schneider et al., 2018; Toomarian & 

Hubbard, 2018). As I will now demonstrate, this distinction has important implications in 

addressing the question of when and why spatial skills and numerical reasoning are 

related. While Galton’s inquiries centred around conscious visualizations of number, the 

vast majority of studies on SNAs have examined the automatic numerical-spatial biases. 

Research on the latter has revealed little evidence that SNAs are related to individual 

differences in numerical reasoning skills (Cipora, Patro, & Nuerk, 2015). Although a 

systematic review is needed to more fully investigate these relations, it is reasonable to 

conclude that automatic spatial-biases (as measured with the SNARC effect for example) 

have little influence on higher level numerical and mathematical processing. There is 

even some evidence to suggest that a negative association may exist. Practicing 

mathematicians, for example, have been found to demonstrate weaker numerical-spatial 

biases compared to control subjects (Cipora et al., 2016). These findings stand in stark 

contrast to the research literature on intentional spatial-numerical associations (e.g., see 

Schneider et al., 2018).        

 For example, research on the number line estimation task reveals a consistent and 

reliable association (Schneider et al., 2018). People who are more accurate at estimating 

where a given number belongs on a horizonal line flanked by two end points (e.g., 0 – 

100; see Figure 1.2), tend to also demonstrate better numerical and mathematical 

reasoning skills. Results of recent meta-analysis revealed an average correlation of .44 

between number line task performance and mathematics (counting, arithmetic, school 

mathematics achievement) across the ages of 4-14 (N=10,576; Schneider et al., 2018). 

This effect size is considerably larger than the correlations that have been reported 

between other foundational numerical skills and mathematics achievement. For example, 

measures of symbolic number comparison – a widely used measure of numerical fluency 

– is estimated to share a .30 correlation with mathematics achievement (e.g., see 

Schneider et al., 2017). Moreover, to date, the most effective mathematics interventions 
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have used the number line as the instructional tool used to enhance students’ numerical 

reasoning (Fischer, Moeller, Bientzle, Cress, & Nuerk, 2011; Link, Moeller, Huber, 

Fischer, & Nuerk, 2013; Ramani & Siegler, 2008). Interestingly, number line training 

studies are theorized to be effective because they lead to a more refined ‘mental number 

line’ (Fischer et al., 2011; Siegler & Ramani, 2009). 

 Thus, in considering the above finings, we are left with an interesting paradox. 

Automatic/unconscious spatial-numerical associations do not appear to be related to 

individual differences in mathematics. On the contrary, intentional spatial-numerical 

associations appear to be strongly related to individual differences in mathematics. 

Moreover, both types of spatial-numerical associations – the unconscious and the 

conscious –  are said to reflect the ‘mental number line.’ What might explain this 

disconnect? 

  To gain insight into this question, I turn to the role that spatial visualization may 

play in first forming spatial-numerical associations. Several studies have now provided 

evidence that spatial visualization skills relate to improved number line performance, 

which in turn is related to improved arithmetic and mathematics performance 

(Gunderson, Ramirez, Beilock, & Levine, 2012; LeFevre, Jimenez Lira, Sowinski, 

Cankaya, Kamawar, & Skwarchuk, 2013; Tam, Wong, & Chan, 2019). In other words, 

linear numerical representations have been found to mediate relations between spatial and 

numerical reasoning. Other researchers have found that spatial visualization skills are 

positively correlated to automatic SNAs, including the SNARC effect (Viarouge, 

Hubbard, & McCandliss, 2014). It has been hypothesized that strong spatial visualization 

skills underlie a greater ease and fluency in which one can move up and down and 

carryout arithmetical operations along the mental number line (Viarouge, Hubbard, & 

McCandliss, 2014). However, this finding is somewhat at odds with the evidence viewed 

above. That is, if spatial visualization skills are linked to automatic SNAs, might we also 

expect automatic SNAs to relate to mathematics? Currently, it remains unclear whether, 

how, and why automatic SNAs mediate relations between spatial visualization and 

mathematics.  

While it is easy to imagine the role that spatial visualization skills play in tasks 

that explicitly call upon the need to map numbers to space (e.g., the empty number line 
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task), it is more difficult to imagine why spatial visualization skills are associated with 

automatic SNAs. One possibility is that automatic SNAs are an artefact of numerical-

spatial relations formed earlier in development. That is, early in development spatial 

visualization skills may help children to construct relations between space and number. 

Over time, children may internalize these spatial-numerical relations, a process which 

eventually gives rise to automatic numerical-spatial biases. An important question is 

whether spatial visualization skills are still related to automatic SNAs, once the ‘building 

process’ is complete. While the study by Viarouge et al. (2014), discussed above, suggests 

that the answer to this question is yes, this is, to the best of my knowledge, the one and 

only study to directly address this question. Moreover, even if follow-up research 

confirms relations between spatial visualization skills and automatic SNAs, we are still 

left with the question of why conscious SNAs but not automatic SNAs relate to 

mathematics. As discussed in the next section, it is also possible that automatic SNAs are 

not as automatic as they appear, but rather constructed on the fly, within the confines of 

working memory and dependent on the specific task demands.  

Critically, the mapping of numbers to space – by way of a ‘mental number line’ – 

might be but one example in which spatial visualization skills are used to map and make 

sense of numerical-spatial relations (e.g., see Lakoff & Núñez, 2000; Marghetis, Núñez, 

& Bergen, 2014). As pointed out earlier, mathematics is full of examples in which 

numbers are mapped to space (e.g., geometric proofs, measurement, topology, etc.). 

Might spatial visualization skills play a more general role in mapping numbers, but also 

other mathematical entities and concepts, onto space? Indeed, as discussed earlier, the 

relationship between spatial visualization skills extends to a wide variety of mathematical 

tasks (Mix & Cheng, 2012). Moreover, numbers do not appear to be unique in their 

automatic association of left-right biases. For example, the SNARC effect has been 

extended and replicated with other ordered stimuli such as the days of week, months of 

the year, and letters of the alphabet (Gevers, Reynvoet, & Fias, 2003; 2004). Relatedly, 

the SNARC effect appears to be flexible and prone to priming effects. For example, 

Fischer et al., (2010) trained participants to view large numbers on the left and small 

numbers on the right and found evidence of a reversed SNARC effect (Fischer, Mills, & 

Shaki, 2010). Together, these findings suggest that the SNARC effect is a) not limited to 
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numbers, and b) easily modulated by context. These findings have led to the hypothesis 

that the SNARC effect is indicative of context-dependent mappings between ordered 

stimuli (numbers, months, letters) and space. Importantly, these findings challenge the 

long-held belief that numbers are inherently spatial and automatically associated with 

space. Instead, an alternative viewpoint has emerged, positing that numerical-spatial 

associations are constructed in working memory during task execution (van Dijck & Fias, 

2011). Whether or not spatial visualization plays a role in this online constructive process 

remains to be studied. However, given the close link between spatial visualization skills 

and explicit numerical-spatial mappings (i.e., number line estimation tasks), spatial 

visualization skills may also facilitate more covert numerical-spatial mappings.   

 Taken together, questions remain regarding the extent to which numbers are 

automatically associated with space versus actively constructed on a moment-to-moment 

basis. Moreover, the role of spatial visualization in mapping numbers to space remains 

largely unknown. In the next section, we continue to expand on the central idea presented 

in this section; that is, spatial and numerical skills may be linked because numbers are 

represented spatially.  While this section has revealed behavioural evidence in favor of a 

close coupling of numbers and space, the next section addresses questions about the 

neural mechanisms that underlie these relations (the explicit focus of Study 2).  

 

1.3.2     Shared Neural Processing Account 
 

According to the shared neural processing account, spatial and numerical processing may 

be related because they rely on the same brain regions and utilize similar neural 

computations. The first indication that this may be the case came from neurological case 

studies. Individuals with damage to the parietal lobes were sometimes observed to 

demonstrate joint deficits in both spatial and numerical processing (Gerstmann, 1940; 

Holmes, 1918; Stengel, 1944). In fact, Gerstmann’s Syndrome, presents a rare but 

specific example of how damage to the parietal lobes (i.e., the left angular gyrus) is 

associated with impaired spatial and numerical reasoning. People with Gerstmann’s 

Syndrome typically display a tetrad of symptoms including acalculia, left-right confusion, 

finger agnosia (difficulty identifying one’s fingers), and dysgraphia (difficulty with 
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writing) (Gerstmann, 1940). It has been suggested that these difficulties may be due to a 

more general deficit in the mental manipulation of visual-spatial images, including 

impaired mental rotation skills (e.g., see Mayer et al., 1999).  

 Research on patients with hemi-spatial neglect provides further evidence that 

space and number may depend on intact parietal lobes. Individuals with hemi-spatial 

neglect demonstrate an inability to attend to the contralesional portion of space (e.g., 

inability to attend to the left side of space when the lesion is in the right parietal lobe). 

This condition is associated with a skewed ability to indicate the mid-point of both real 

and imagined objects, but also the mid-point of numerical intervals (Bisiach & Luzatti, 

1978; Zorzi et al., 2002). For example, Zorzi et al. (2002) asked right-lateralized neglect 

patients to indicate the mid-point of two spoken numbers, such as “two” and “six.” 

Presumably, due to an impaired ‘mental number line,’ patients were found to biases their 

estimates to the right and erroneously state “five” as the mid-point. Taken together, 

neuropsychological case studies provide the earliest evidence that spatial and numerical 

processing may rely on common parietal cortex.  

More recently, the advent of fMRI has given way to a host of follow-up 

investigations into the neural correlates of numerical and spatial thinking. This body of 

research points to the intraparietal sulcus (IPS) as the critical juncture in which numbers 

and space may interact (e.g., see Study 2). Indeed, it is now well-established that the IPS 

and its neighboring regions play a critical role in reasoning about a variety of magnitudes, 

including non-symbolic quantities (e.g., arrays of dots), space (size and shape), 

luminance, and even abstract notions such as number and time (see Kadosh, Lammertyn, 

& Izard, 2008; Sokolowski et al., 2017; Walsh, 2003). Thus, there is evidence to suggest 

that basic spatial and numerical processes rely on common regions in and around the IPS.  

There is also evidence that higher-level spatial skills, such as mental rotation, may 

also draw on these same parietal regions. For example, it has long been recognized that a 

central function of the parietal lobes is the performance of spatial transformations. 

Support for this can be seen in the results of a meta-analysis by Zacks (2008) on the 

neural correlates of mental rotation. He found evidence to suggest that the IPS was the 

most robust and consistently activated brain region associated with mental rotation. Other 

spatial visualization processes, such as being able to compose/decompose and translate 



 

18 

 

geometric shapes, have also been associated with activity in this region (Jordan, Heinze, 

Lutz, Kanowski, & Jäncke, 2001; Seydell-Greenwald, Ferrara, Chambers, Newport, & 

Landau, 2017). One reason that spatial and numerical reasoning may be linked is through 

shared processes related to mental transformations. According to Hubbard et al. (2009): 

parietal mechanisms that are thought to support spatial transformation might be ideally 

suited to support arithmetic transformations as well” (2009, p. 238). Indeed, this is an 

intriguing possibility and one that supports the neuronal re-cycling hypothesis.  

According to the neuronal recycling hypothesis, numbers as well as other 

mathematical symbols and concepts, may re-use the brain’s neural resources that were 

originally specialized for interacting with the physical world (e.g., see  Anderson, 2010; 

2015; Dehaene & Cohen, 2007; Lakoff & Núñez, 2000; Marghetis, Núñez, & Bergen, 

2014). In other words, numerical processing may co-opt or re-use the brain’s more 

ancient and evolutionary adaptive spatial and sensorimotor systems, which originally 

served our abilities to interact with tools, objects, and locations in space (Dehaene et al., 

2003; Johnson-Frey, 2003; Lakoff & Núñez, 2000). Marghetis et al. (2014) offer this 

summary of the neuronal re-cycling account: “we may recycle the brain’s spatial prowess 

to navigate the abstract mathematical world” (p. 1580). The neuronal recycling 

hypothesis has been used by many as explanation for numerical-spatial biases observed 

through both behavioral as well as neuroimaging studies.   

Taken together, there is compelling evidence that spatial and numerical processing 

are associated with overlapping regions of parietal cortex, namely in and around the IPS. 

However, there are also some notable gaps in the literature. One such gap is the emphasis 

placed on uncovering how basic spatial processes (e.g., comparing line lengths) relate to 

basic numerical processes (e.g., comparing Arabic digits; e.g., see Sokolowski, Fias, 

Mousa, & Ansari, 2017). To date, research on higher-level spatial skills (i.e., those that 

require spatial transformation, such as mental rotation) have been studied in isolation 

from neuroimaging studies of numerical cognition So, although there is good evidence to 

suggest that higher-level spatial skills also rely on processes associated with the IPS, we 

do not yet have any direct evidence (i.e., from a single study) for this correlation. 

However, this is a critical gap in the literature for reasons discussed earlier. While there is 

robust evidence for relations between spatial visualization skills and numerical and 
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mathematical performance, there is little evidence that spatial representations of number 

relate to individual differences in numerical and mathematical performance. Thus, when it 

comes to better understanding individual differences in mathematics performance, much 

can be gained by studying the neural relations between spatial skills proper and numerical 

and mathematical reasoning. In Study 2, I address the question of spatial and numerical 

cognition are related in the brain. More specifically, I report the results of an fMRI meta-

analysis that was designed to uncover brain regions associated with symbolic number, 

arithmetic, and mental rotation.  

 

1.3.3     Spatial Modelling Account 
 

According to the spatial modelling account, spatial visualization is related to 

mathematical reasoning because it provides a “mental blackboard” of which mathematical 

relations and operations can be modeled and visualized. More specifically, spatial 

visualization has been posited to play a critical role in how one organizes, models, and 

ultimately conceptualizes novel mathematical problems (Ackerman, 1988; Mix et al., 

2016; Uttal & Cohen, 2012). Although there may be little to no need to model familiar 

mathematical content, such as memorized arithmetic facts, the visualization process may 

prove beneficial when confronted with novel mathematical content, such as arithmetic 

questions that require multi-step calculations.  Moreover, the spatial modelling account 

functions to bridge past, present, and future knowledge states. For example, to solve the 

question, 58 + 63, one might use their prior knowledge of arithmetic facts to arrive at a 

previously unknown arithmetic fact (e.g., reason that 50 + 60 = 110 and 8 + 3 = 11; 

therefore, the solution is 110 + 11 = 121). To do this – bridge prior knowledge with newly 

created knowledge – one must also maintain the problem and interim solutions in mind. 

Whether or not these same functions might just as easily be ascribed to a working 

memory account is an important question and one we further address below (and address 

in Study 1).  

 Arguably, the most impressive feature of the spatial-modelling account, but also 

perhaps its Achilles heel when it comes to empirical study, is that there are few, if any, 

limitations on the type of mathematical content that can be modeled by way of spatial 
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visualization. Indeed, spatial visualization processes provide a space in which one can 

move back and forth between a multitude of representations; between the concrete (e.g., 

an array of 5 objects) and the abstract (e.g., the number word ‘five’), the symbolic (e.g., 

Arabic numerals) and nonsymbolic (e.g., collections of objects), real and the imagined, 

and static and dynamic representations (Antonietti, 1999).  In short, nothing is off limits 

when it comes to what mathematical relations can be modeled through visualizations. It is 

for this reason that it can be difficult to empirically investigate the spatial-modeling 

account. How does one reveal the specific type of spatial modelling that occurs in the 

‘mind’s eye’ of any given individual? Are some types of spatial modelling more 

conducive to effective mathematical reasoning than others?  

 One promising approach to these questions comes from studying how children 

model solutions to mathematical word problems. For example, Hegarty and Kozhevnikov 

(1999) presented children with the following word problem: 

 

“A balloon first rose 200 meters from the ground, then moved 100 meters to 
the east, then dropped 100 meters. It then traveled 50 meters to the east, and 
finally dropped straight to the ground. How far was the balloon from its 
original starting place?”            

 

Children’s accompanying drawings to the problem revealed key insights and differences 

into how children modeled/visualized the problem. While some children’s drawings were 

literal representations of the problem, others were more abstract and contained only the 

relevant mathematical details needed to answer the question. Based on these differences, 

children’s drawings were categorized as either pictorial (more literal in representation) or 

visual-schematic (more abstraction in representation; emphasis on relevant numerical-

spatial relations; See Figure 1.4 for an example). Children who produced visual-

schematic representations were more likely to arrive at the correct solution. Moreover, 

children who produced visual-schematic representations were also found to demonstrate 

significantly higher spatial visualization skills. Several studies have since replicated this 

finding (see Boonen, van der Schoot, van Wesel, de Vries, & Jolles, 2013; Boonen, van 

Wesel, Jolles, & van der Schoot, 2014). Taken together, these studies suggest that spatial 

visualization skills may indeed help learners to better model mathematical relations, 

which in turn, may lead to improved mathematical performance.  
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Figure 1.4   An example of a visual-schematic representation (A) vs. a pictorial 

representation (B).  

 

 In the above studies on word problems, it appears best to create mental models of 

only the relevant mathematical details. However, the question of what to model is likely 

task/question specific. For some maths problems, it is not so much about ‘doing away’ 

with irrelevant details, but about retaining, manipulating, and forming new relations with 

the information given. For example, take missing term problems, such as 5 + __ = 7. It 

has been suggested that one of the ways in which children come to develop fluency with 

such questions, is through the ability to re-structure (re-model) the problem. So, instead of 

5 + __ = 7, the learner might transform the question into the more familiar form, __ = 7 – 

5.  What role might spatial visualization skills play in this process? To investigate this 

question, Cheng and Mix (2014) carried out a randomized controlled trial with 6- to 8-

year-olds. Half the children were assigned to mental rotation training condition and the 

other half were assigned to an active control group. Compared to the control group, 

children in the mental rotation group demonstrated significant gains on the missing term 

problems. Consistent with the spatial-modelling account, the authors suggested that gains 

on the missing term problems may have a resulted from an improved ability to re-model 

the problems into an easier format. This study provided the first causal evidence that 

spatial visualization training may transfer to mathematics. However, a recent follow-up 

study by Hawes et al. (2015), failed to replicate this finding. It is clear that more research 

is needed before causal claims can be made about the generalizability of spatial training 
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to mathematics. In moving forward, such efforts should also try to more specifically 

address the mechanism of transfer. For example, what evidence is there that the changes 

in mathematics occur because of the effect that spatial training has on the way the 

problems are modelled? Insights into this question are needed in order to test the validity 

and make causal claims about the spatial-modelling account.  

 As mentioned earlier, one of the predictions of the spatial-modelling account is 

that spatial-modelling is most used when dealing with novel versus familiar mathematical 

content. There is some evidence that this may be the case. To test this possibility, Mix et 

al. (2016) examined the relation between spatial skills, including spatial visualization, and 

novel and familiar mathematical content. Their results suggested that spatial skills were 

most closely related to novel mathematical problems. In Study 1, I provide additional 

insights into this issue. Using a latent-variable analysis, I examine relations between basic 

numerical skills, more advanced mathematical skills (e.g., applied number problems, 

number operations), and spatial visualization skills. Based on the spatial-modelling 

account stronger relations should be observed between spatial visualization skills and 

more advanced mathematics compared to more basic numerical skills. However, based on 

the ‘spatial representation of numbers account’ we might also predict that the link 

between spatial visualization and higher-level mathematics is mediated through basic 

numerical competencies. I test both of these possibilities in Study 1.  

It is important to note that the spatial-modelling account overlaps with other 

theories of numerical and mathematical cognition. In particular, it bears close 

resemblance with grounded and embodied accounts of mathematical cognition. According 

to these perspectives, mathematical thought is grounded in our everyday sensory and 

bodily experiences (Anderson, 2010; 2015; Lakoff & Núñez, 2000; Marghetis, Núñez, & 

Bergen, 2014). It is through engaging with metaphors, mental imagery, and simulated 

actions that mathematics becomes meaningful, and ironically, ‘groundless’ (e.g., see 

Lakoff & Núñez, 2000). This view contrasts with the perspective that mathematics is 

largely independent of sensorimotor experiences and instead is a function of symbolic 

amodal thought (e.g., see Barsalou, 2008). Most relevant to the spatial-modelling account 

is the role that mental simulation has been hypothesized to play in cognition in general, 

and in mathematics, in particular (Anderson, 2015; Barsalou, 2008). Indeed, mental 
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simulation and mental modelling are alike in that they describe mental processes related 

to the reenactment of sensorimotor experiences (e.g., mental imagery) in the service of a 

future goal (e.g., arriving at the correct solution to a word problem). The following 

provides an apt summary of the grounded cognition account, including clear parallels 

with mental simulation and the spatial modelling account:   

 
Operations with some of the objects in mental models are like operations 
with physical objects. In reasoning about these objects, the person mentally 
moves about on them or in them, combines them, changes their sizes and 
shapes, and performs other operations like those that can be formed on 
objects in the physical world (Greeno, 1991, p. 178).  

To be clear, the spatial-modelling account is a more specific instantiation of mental 

simulation; one that is confined to the discipline of mathematics and deals explicitly with 

spatial relations. The above quote speaks to the ‘neuronal recycling’ hypothesis 

mentioned earlier, offering additional insights into why space and number might both 

heavily recruit bilateral regions in and around the IPS. It is possible that numbers and 

various other mathematical concepts are processed in ways similar to the planning and 

actions associated with our handling of everyday objects. It is not unusual, for example, 

to hear of mathematicians speak of numbers as objects, as entities to be manipulated and 

acted on. In fact, common definitions of mathematics include “the study of objects and 

their relations” (retrieved form Wikipedia, December 2017). An interesting question 

moving forward is the extent to which certain mathematical operations (e.g., division) are 

(in)distinguishable from our embodied as well imagined experiences of 

dividing/decomposing quantities (e.g., see Lakoff & Núñez, 2000). Functional MRI 

studies are ideally suited to examine such questions.  

1.3.4     Working Memory Account 
 

Another way in which spatial visualization and mathematical skills may be related is 

through another variable which shares relations with performance in both of these areas. 

For example, it is possible that spatial visualization skills are essentially a proxy for other 

cognitively demanding skills, such as executive function and working memory skills. 

Visual-spatial working memory (VSWM), in particular (i.e., the capacity to temporarily 
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store, maintain, and manipulate visual-spatial information), may explain the relations 

between spatial visualization and numerical skills. In this section, I review the evidence 

for and against this proposal and outline how Study 1 further contributes to this 

possibility.   

 Research to date suggest that both spatial visualization skills and VSWM are 

strongly related to numerical reasoning. As discussed above, performance on spatial 

visualization tasks, such as mental rotation, have been linked to basic measures of 

numerical competencies, including arithmetic, number comparison, and number line 

estimation. Similarly, VSWM has also been found to explain similar amounts of variance 

in these same measures. Furthermore, there is evidence of close relations between all 

three of these variables – VSWM, spatial visualization, and numerical reasoning – when 

measured concurrently in the same studies (Alloway & Passolunghi, 2011; DeStefano & 

LeFevre, 2004; Kaufman, 2007; Kyllonen & Christal, 1990; Kyttälä et al., 2003; Li & 

Geary, 2017; Mix et al., 2016). Together, these findings question the extent to which 

spatial visualization and VSWM skills make unique contributions to numerical abilities.  

 It has been suggested that poor spatial abilities are a result of low VSWM. For 

example, several researchers have demonstrated notable differences in people of low- 

versus high-spatial abilities in their abilities to form, maintain, and transform visual-

spatial representations (Carpenter & Just, 1986; Just & Carpenter, 1985; Lohman, 1988). 

Carpenter and Just (1986) concluded that “a general characterization...is that low spatial 

subjects have difficulty maintaining a spatial representation while performing 

transformations” (p. 236). That is, individuals with low-spatial abilities tend to “lose” 

information as they engage in the act of spatial transformation. For example, when 

mentally rotating cube figures, individuals with low-spatial abilities often lose “sight” of 

the mental image and require multiple attempts at rotation (Carpenter & Just, 1986; 

Lohman, 1988). Against this background, researchers have attributed individual 

differences in spatial visualization as primarily due to differences in working memory 

(e.g., see Hegarty & Waller, 2005).  

Evidence to suggest that spatial visualization skills and VSWM are not as related 

as suggested above comes from three separate bodies of research: factor analyses, 

research on sex differences, and training studies. Studies from factor analytic studies 
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suggest that VSWM, spatial visualization, and executive functions (EFs) represent 

distinct cognitive constructs (i.e., latent variables; Miyake et al., 2001). In Study 1, I 

examine the extent to which numerical, spatial, and EF skills (including measures 

VSWM) and mathematics achievement represent distinct cognitive constructs. Moreover, 

I test whether relations between spatial visualization and mathematics achievement can be 

explained by general intelligence (g-factor), EFs, VSWM, or basic numerical skills. In 

doing so, I provide the most stringent test to date on whether the relation(s) between 

spatial visualization and mathematics is attributable to third party variables, including 

primary candidates VSWM and general intelligence.   

Further evidence that spatial visualization and VSWM are separable constructs 

can be gleaned from findings of reliable sex differences on measures of spatial 

visualization but not VSWM (Halpern et al., 2007). Beginning by about the age of ten 

males tend to outperform females on measures of mental rotation, with estimated effects 

sizes ranging from .9 – 1.0 (Halpern et al. 2007; Titze, Jansen, & Heil, 2010). 

Importantly, sex differences are not confined to mental rotation tasks but also emerge on 

other spatial visualization tasks, including mental paper folding tasks (Halpern et al. 

2007). Findings of sex differences in spatial visualization skills, but not VSWM, further 

suggests that these two aspects of visual-spatial processing may represent distinct 

constructs.  

Training studies provide further evidence that VSWM and spatial skills behave 

and operate in unique ways. Although the effects of VSWM training are hotly debated 

and there is little evidence that training generalizes to other related tasks (e.g., 

mathematics; Redick, Shipstead, Wiemers, Melby-Lervåg, & Hulme, 2015), a different 

picture has emerged with respect to spatial training. A recent meta-analysis of 217 spatial 

training studies by Uttal and colleagues (2013) indicates that spatial thinking can be 

improved in people of all ages and through a wide assortment of training approaches 

(e.g., course work, task-based training, video games). Furthermore, the researchers 

concluded that although further evidence is still required, it appears as though the effects 

of spatial training transfer to a variety of novel and untrained spatial tasks. In subsequent 

sections, I return to the topic of spatial training and the extent to which spatial training 

transfers to numerical reasoning. The take away point in this section, however, is that 
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compared to VSWM, spatial visualization skill appears to represent a more flexible and 

adaptive cognitive system, providing further insight into the separability of VSWM and 

spatial skills. I return to the idea that spatial skills may be more malleable and 

transferrable to mathematics in the General Discussion.   

At this point, it is worth returning to the question at hand: Does VSWM explain 

the relationship between spatial visualization skills and numerical/mathematical abilities? 

Based on the available evidence, there are reasons to suspect that 1) spatial visualization 

and VSWM are separable constructs, and 2) that each share independent pathways with 

numerical skills. An important follow-up question is why VSWM and spatial 

visualization skills may differentially contribute to numerical and mathematical learning 

and performance.   

 One proposal is that VSWM and spatial visualization differ according to the 

cognitive demands placed on the need to “recall” versus “generate” visual-spatial 

information. For example, at a measurement level, most VSWM measures primarily 

require participants to recall, maintain, and (sometimes) manipulate visual-spatial 

information. Most spatial visualization measures, on the other hand, require participants 

to perceive, maintain, manipulate, and ‘generate’ visual-spatial solutions. Thus, the shared 

need to maintain and manipulate visual-spatial information may explain the previously 

reported correlations between VSWM and spatial visualization. However, the differences 

in task requirements might be one reason to predict differential relations with numerical 

performance. While VSWM skills may play a greater role in numerical tasks that 

emphasize the need to recall and maintain information (e.g., basic arithmetic), spatial 

visualization skills may play a greater role in numerical tasks that emphasize the need to 

generate novel solutions (e.g., word problems, applied problems). Notably, this prediction 

supports the spatial-modelling account discussed earlier. Spatial visualization skills are 

predicted to be especially useful, even more so than VSWM, on problems that require the 

modelling and generation of problem solutions. In Study 1, I examine this possibility by 

testing, for the first time, whether ‘recall’ and ‘generative’ cognitive tasks load on 

separate factors. I then address whether there is any evidence that these two factors 

differentially relate to mathematics achievement.  
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1.4     Knowledge Translation – Integrating the Science of 

  Learning and the Practice of Teaching  
 

In this section, I take a step back from the goal of elucidating more basic mechanisms 

linking spatial, numerical, and mathematical thinking. Instead, I ask whether any of this 

knowledge might be leveraged in ways to improve mathematics teaching and learning. 

This is the focus of my third and final study. I address the question of how to better 

integrate research in numerical cognition and mathematics education to strengthen the 

teaching and learning of early number. More specifically, I report on the design, 

implementation, and effects of an in-service mathematics Professional Development (PD) 

model for teachers of Kindergarten–3rd Grade. This study was designed to address the 

research-to-practice gap.  

 

1.4.1     A Brief History of the Research-Practice Gap in 

      Psychology and Education 
 

One of the draws of psychological research, in particular studies concerned with human 

development, cognition, and learning, is the promise that the findings from such research 

can be used to inform our knowledge of how people learn. This information in turn has 

the potential to bring about improved learning outcomes across a variety of contexts, 

including, most notably, the classroom. However, the application of psychological 

research into principles and practices of teaching and learning has proven to be an 

extremely difficult endeavor.  

Indeed, questions of how to apply research to practice (i.e., the research-to-

practice gap) has plagued the discipline of psychology since its beginnings. William 

James, the father of American psychology, wrote about the difficulties surrounding the 

research-to-practice gap, as did other early influential thinkers including John Dewey and 

Edward J. Thorndike (James, 1899; Dewey, 1897/1998; Thorndike, 1917;1921). 

However, instead of merely acknowledging the problem, these psychologists, as well as 

many others of this time period (e.g., Pyle, 1928; Ragsdale, 1932), actively sought 
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solutions to the research-practice gap. It was not uncommon for researchers to meet with 

practicing teachers to discuss methods of applying psychological research to classroom 

learning (e.g., see Chase, 1998). For example, William James regularly met with teachers 

and spoke of evidence-informed instructional tactics for teachers (Chase, 1998; James, 

1899) and Thorndike made connections between his basic research on connectionism to 

the teaching and learning of arithmetic (Thorndike, 1917;1921).  

However, this trend towards efforts to close research-to-practice gaps did not 

continue into the mid 20th Century.  Prominent researchers including E. C. Tolman (1932), 

E. R. Guthrie (1935), Kurt Lewin (1936), B. F. Skinner (1938), Kenneth Spence (1942), 

and Clark Hull (1943), proposed learning theories predominantly derived from carefully 

controlled laboratory experiments, often involving animals as subjects. Learning was 

described with highly technical terms, such as drive reduction, schedules of 

reinforcement, inhibition, extinction, and cognitive maps. According to Chase (1998), 

these new terms “were nonsense syllables to most front line educators” and “The 

vocabulary necessary for communication with other educational specialists was 

disappearing” (Chase, 1998, p. 242). Taken together, the 3rd and 4th decades of the 20th 

Century psychology were marked by a widening of the research-practice gap.   

Behaviorist models of learning eventually gave way to cognitive and 

constructivist models of learning. Influential theories of learning were proposed by 

Jerome Bruner, Lev Vygotsky, and Jean Piaget. Interestingly, these theories continue to be 

frequently discussed in teacher preparation and Educational Psychology courses and text 

books. However, a criticism of this work is that at it has remained overly theoretical and 

not immediately useful for actual classroom practice (Berliner, 1992). So, although this 

work has had some influence on approaches to educational practice (e.g., Vygotsky’s 

ideas around the Zone of Proximal Development), many questions remain about how and 

whether these theories can directly be applied to classroom practice.  

The question of how to better integrate research and practice has resurfaced as a 

critical issue in contemporary psychology. Beginning at around the turn of the 21st 

Century and continuing to present day, researchers in a variety of subfields of psychology, 

including cognitive science and neuroscience, have become increasingly interested in 

addressing the research-practice gap.  
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Indeed, over the last 15 years there has been a steep rise in the number of journals, 

societies, and research labs dedicated to the mission of knowledge translation and 

application across the disciplines of psychology, neuroscience, and education. This new 

field of study is often referred to as Mind, Brain, and Education or Educational 

Neuroscience. The goals of the Learning Sciences are also closely aligned with the 

development of these new disciplines. The development of journals associated with this 

movement include, Mind, Brain, and Education, Trends in Neuroscience and Education, 

npj Science of Learning. Taken together, we are in the midst of a new wave of efforts to 

bring research and practice into closer contact.  

I provide the above history of the research-practice gap because it helps 

contextualize the goals of my third study. More broadly, it also helps contextualize the 

aims and scope of my research program as a whole. As evidenced in the present PhD, I 

seek to better understand how people learn and what this might mean for education and 

intervention through combining methodological approaches and disciplinary perspectives 

across the psychological, neural, and educational sciences. For reasons discussed next, I 

am hopeful that the effort to better integrate research and practice will fare better than 

efforts of the past. 

  

1.4.2     Moving Forward – A better Integration of Research 

and Practice Across Psychology, Neuroscience, and 

Education 
 

One proposed reason for the lack of successful research-practice integration in the past 

was due to the lack of infrastructure or mechanisms needed to facilitate more optimal 

translation and application of research to practice (Ansari & Coch, 2006). As mentioned 

above, progress has been made in this regard; the development of new journals, societies, 

and fields of study have contributed to an improved infrastructure and means of 

communication across disciplines interested in addressing the research-practice gap. 

However, it is also clear that this is not enough. Indeed, the future of successful research-

practice integration may require a return to the earliest days of psychology. A return to the 
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efforts of James and Thorndike who not only recognized the importance of both basic 

research and applied practice, but the need to build intermediary links between them. That 

is, rather than continually justify why efforts should be directed at ‘bridging the gap,’ 

actions and concrete examples of how to bridge the gap are needed. My third study 

addresses this need. I propose the need for researchers and educators to directly interact 

with one another and work collaboratively towards the goal of integrating research and 

practice. 

 

1.5      Summary of Background, Rationale, and Study 

   Objectives  
 

The literature reviewed above reveals several gaps in our understanding of mathematics 

learning and performance. This thesis was designed and carried out to address these gaps. 

I will now provide a brief review of each study, summarizing the background and 

rationale for each study, as well as the more specific goals of each study. I will also make 

it clear how and why each study contributes to an improved understanding of 

mathematical cognition and learning. 

 

1.5.1    Overview of Study 1 – Relations between Numerical, 

    Spatial, and Executive Function Skills and 

    Mathematics Achievement: A Latent-Variable 

    Approach 
  

Current evidence suggests that numerical, spatial, and executive function (EF) skills each 

play critical and independent roles in the learning and performance of mathematics (e.g., 

see De Smedt, Noël, Gilmore, & Ansari, 2013; Mix & Cheng, 2012; Cragg & Gilmore, 

2014). However, these conclusions are largely based on isolated bodies of research and 

without measurement at the latent variable level. While prior research has examined latent 

relations between two of these constructs (e.g., spatial and mathematical abilities; Mix et 
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al., 2016; 2017; spatial and EF abilities; Miyake, Friedman, Rettinger, Shah, & Hegarty, 

2001), relations between all four constructs has yet to be examined. Thus, questions 

remain regarding the extent to which these skills represent distinct constructs and whether 

numerical, spatial, and EF skills afford differentiated pathways to mathematics 

achievement. This study aims to address this gap by examining the latent structure and 

interrelations between numerical, spatial, EF, and mathematics abilities in a sample of 4-

to 11-year-olds.  

In addition to providing a cognitive model of children’s mathematics achievement, 

this study was designed to more closely reveal insight into the underlying nature of the oft 

reported space-math association. Although there is extensive correlational evidence 

linking spatial and mathematical cognition, including decades of behavioral and neural 

research (Mix & Cheng, 2012; Hubbard, Piazza, Pinel, & Dehaene, 2005), relatively few 

efforts have been made to reveal potential mechanisms linking space and math. Here, we 

test the hypothesis that spatial visualization plays a critical role in mathematical problem 

solving and achievement. By testing a model of mathematical achievement that includes 

numerical, spatial, and EF factors, we were able to test and control for specific pathways 

connecting spatial visualization skills and mathematics achievement. This allowed us to 

examine the extent to which the space-math link is best explained by direct relations 

between spatial visualization and mathematics or whether the space-math link might be 

better explained by alternative mechanisms. Specifically, we test whether general 

intelligence and/or EF skills (including visual-spatial working memory) might better 

explain the space-math link. In addition, we test the hypothesis that spatial visualization 

skills are indirectly related to mathematics through basic numerical skills (e.g., see 

Gunderson, Ramirez, Beilock, & Levine, 2012; LeFevre et al., 2013). The findings related 

to these pathways are crucial in order to advance current theories of spatial and 

mathematical associations. 

 

To summarize, this study was designed to: 

(i) Test whether numerical, spatial, and EF skills and mathematics achievement 

represent distinct cognitive constructs 
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(ii) If they do represent distinct constructs, how do numerical, spatial, and EF 

skills relate to mathematics achievement  

(iii) Test whether numerical and EF skills mediate relations between spatial skills 

and mathematics achievement  

1.5.2    Overview of Study 2 – Neural Underpinnings of 

Numerical and Spatial Cognition: An fMRI Meta- 

Analysis of Brain Regions Associated with Symbolic 

Number, Arithmetic, and Mental Rotation 
 

Study 2 explores the extent to which spatial and numerical skills – key foundations of 

mathematical thinking – rely on shared and distinct neural mechanisms. Although there is 

extensive behavioral evidence for strong relations between spatial and numerical 

thinking, questions remain regarding the underlying neural relations between these two 

cognitive constructs. To date, research on the neural correlates of visual-spatial skills, 

such as mental rotation, and numerical reasoning have been studied in isolation from one 

another (e.g., Zacks, 2008). Thus, it remains unclear whether and to what extent spatial 

and numerical cognition rely on similar neural networks.      

 To address this gap in the literature, we report on a meta-analysis of brain regions 

associated with neural activity in three key aspects of mathematical thinking: basic 

symbolic number processing, arithmetic, and mental rotation (a widely accepted 

archetype of visual-spatial reasoning). We targeted these three cognitive skills in an effort 

to tease apart brain regions potentially related to symbolic number processing, including 

arithmetic, as well as regions more attuned to mental manipulation. Taken together, we 

see the current study as an important step in providing a comprehensive overview of the 

neural correlates of mathematical thinking. More specifically, this study delves into the 

age-old question of why spatial and numerical abilities are related by mapping – for the 

first time – the common and distinct brain regions associated with spatial and numerical 

cognition.   

 



 

33 

 

To summarize, this study was designed to: 

(i) Reveal the neural correlates of three key cognitive processes found to underlie 

mathematical thought - basic symbolic number, arithmetic, and spatial 

reasoning (mental rotation)  

(ii) Test a theoretical model that makes predictions about when, where, and why 

numerical and spatial cognition may converge and diverge in the human brain 

(iii) Relatedly, tease apart regions of activation subserving mental manipulation 

versus symbolic number representation. 

1.5.3    Overview of Study 3 – Integrating Numerical 

            Cognition Research and Mathematics Education to 

            Strengthen the Teaching and Learning of Early 

            Number 
 

This study addresses the question of how to translate and apply the science of learning 

with the practice of teaching. More specifically, it addresses the research-to-practice gap 

in the area of numerical cognition and mathematics education. Because the implications 

for classroom instruction do not immediately follow from the science of learning, there is 

a need to build infrastructure that supports and facilitates opportunities for collaborative, 

productive, and iterative exchange between the disciplines of education and 

developmental cognitive science. 

In response to this need, the current study reports on the design, implementation, 

and effects of a 3-month (~25 hour) teacher intervention for teachers of kindergarten – 3rd 

grade. To test the replicability of the model, we carried out a two-year pre-post controlled 

study across two different intervention sites. We report on the effects of the intervention 

model at both the teacher and student level. The intervention is grounded in research in 

numerical cognition and uses this knowledge to inform teachers’ assessment and 

instructional practice. In brief, this study describes and tests a new model of teacher PD 

designed to: 1) Enrich teachers’ awareness of and understanding of research on children’s 
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numerical thinking, and 2) uses this knowledge to inform teachers’ assessment and 

instructional practice.  

 

To summarize, this study was designed to: 

(i) Design and implement a new teacher PD model aimed at creating stronger 

connections between developmental cognitive science and early mathematics 

education  

(ii) Test the effects of the intervention model on both teachers and their students  

(iii) Test the replicability of the model across two different school sites  

1.6     Summary Statement     
 

To summarize, the current thesis is focused on better understanding how humans are able 

to learn and perform abstract mathematics. To approach this task, I consider the influence 

of cognitive, neural, and educational factors in mathematics performance and 

achievement. More specifically, my research aims to more closely reveal the specific 

roles that numerical and spatial skills play in mathematics as well as the ways in which 

numerical cognition research can be leveraged to improve mathematics teaching and 

learning. Ultimately, my hope is that this work will make a small contribution to the much 

larger goal of advancing our understanding of what underlies mathematical cognition and 

learning.   
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Chapter 2  

2 Relations between Numerical, Spatial, and Executive 

Function Skills and Mathematics Achievement: A 

Latent-Variable Approach 

2.1 Citation 

With the exception of formatting changes, this chapter has been published in its current 

form and is cited as followed:    

 

Hawes, Z., Moss, J., Caswell, B., Seo, J., & Ansari, D. (2019). Relations between 

numerical, spatial, and executive function skills and mathematics achievement: A latent-

variable approach. Cognitive Psychology, 109, 68-90. 

2.2  Introduction 

How do humans learn to think mathematically? What role do cognitive skills play in the 

ability to engage in abstract mathematical thought? During the past two decades, 

researchers from a wide variety of disciplines, including psychology, cognitive 

neuroscience, and education, have become increasingly interested in answering these and 

other related questions. This is due, in part, to the growing recognition of the importance 

of mathematics for both school and life success (e.g., see Duncan et al., 2007; Parsons & 

Bynner, 2005). For instance, early mathematics skills strongly predict later mathematics 

achievement, as well as educational attainment more generally, and contribute to 

important life outcomes, such SES, health and personal well-being (Duncan et al., 2007; 

Parsons & Bynner, 2005; Ritchie & Bates, 2013). In short, there is a need to better 

understand factors that contribute to individual differences in the development of and 

achievement in mathematics.  

Current evidence suggests that numerical, spatial, and executive function (EF) 

skills each play critical and independent roles in the learning and performance of 
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mathematics (e.g., see De Smedt, Noël, Gilmore, & Ansari, 2013; Mix & Cheng, 2012; 

Cragg & Gilmore, 2014). However, these conclusions are largely based on isolated bodies 

of research and without measurement at the latent variable level. While prior research has 

examined latent relations between two of these constructs (e.g., spatial and mathematical 

abilities; Mix et al., 2016; 2017; spatial and EF abilities; Miyake, Friedman, Rettinger, 

Shah, & Hegarty, 2001), relations between all four constructs has yet to be examined. 

Thus, questions remain regarding the extent to which these skills represent distinct 

constructs and whether numerical, spatial, and EF skills afford differentiated pathways to 

mathematics achievement. In this paper, we address this gap in the literature and examine 

the latent structure and interrelations between numerical, spatial, EF, and mathematics 

abilities in a sample of 4-to 11-year-olds.  

In addition to providing a comprehensive cognitive model of children’s 

mathematics achievement, this study was designed to more closely reveal insight into the 

underlying nature of the oft reported space-math association. Although there is extensive 

correlational evidence linking spatial and mathematical cognition, including decades of 

behavioral and neural research (Mix & Cheng, 2012; Hubbard, Piazza, Pinel, & Dehaene, 

2005), relatively few efforts have been made to reveal potential mechanisms linking space 

and math. Here, we test the hypothesis that spatial visualization plays a critical role in 

mathematical problem solving and achievement. By testing a model of mathematical 

achievement that includes numerical, spatial, and EF factors, we were able to test and 

control for specific pathways connecting spatial visualization skills and mathematics 

achievement. This allowed us to examine the extent to which the space-math link is best 

explained by direct relations between spatial visualization and mathematics or whether 

the space-math link might be better explained by alternative mechanisms. Specifically, we 

test whether general intelligence and/or EF skills (including visual-spatial working 

memory) might better explain the space-math link. In addition, we test the hypothesis that 

spatial visualization skills are indirectly related to mathematics through basic numerical 

skills (e.g., see Gunderson, Ramirez, Beilock, & Levine, 2012; LeFevre et al., 2013). The 

findings related to these pathways are crucial in order to advance current theories of 

spatial and mathematical associations.  
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In the next section, we provide a more detailed review of space-math associations. 

We then operationalize basic numerical skills and EFs, as defined in the current study, 

and review evidence to suggest differentiated pathways from each of the targeted 

constructs to mathematics achievement. Our main study objectives and hypotheses are 

then discussed in light of this review.  

 

2.2.1     Relations between Spatial Skills and Mathematics 
 

The scientific study of associations between spatial and mathematical thinking has a 

lengthy history, dating back to Sir Francis Galton’s inquiries into the visualization of 

numerals in the late 1800’s (Galton, 1880). Indeed, a large body of research supports the 

finding that people with strong spatial skills also tend to do well in mathematics (Mix & 

Cheng, 2012). Of the various spatial skills identified, spatial visualization skills appear to 

play an especially important role in mathematics learning and achievement (Mix et al., 

2016). Defined as the ability to generate, retrieve, maintain, and manipulate visual-spatial 

information (Lohman, 1996), spatial visualization skills have been linked to performance 

across a breadth of mathematics tasks, including arithmetic (Kyttälä  & Lehto, 2008), 

word problems (Hegarty & Kozhevnikov, 1999), geometry (Delgado & Prieto, 2004), 

algebra (Tolar, Lederberg, & Fletcher, 2009), and highly advanced mathematics, 

including function theory, mathematical logic, and computational mathematics (Wei, 

Yuan, Chen, & Zhou, 2012). Moreover, the link between spatial visualization and 

mathematics is not limited to tasks that are inherently spatial, such as geometry or 

measurement. Research demonstrates that even basic number processing, such as 

comparing which digit is numerically larger (7 vs. 2), is closely associated with spatial 

visualization skills, such as mental rotation (Thompson, Nuerk, Moeller, & Cohen 

Kadosh, 2013; Viarouge, Hubbard, & McCandliss, 2014).  

  What explains the math-space link? One popular theory posits that numbers are 

represented spatially (de Hevia, Vallar, & Girelli, 2008). That is, humans come to 

conceive of and arrange numbers along a “mental number line,” with small numbers 

belonging to the left and larger numbers extending to the right (Dehaene, Bossini, & 

Giraux, 1993). Interestingly, the left-to-right orientation of the mental number line 
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appears to be culturally-specific and is reversed in cultures that read and write right-to-

left (Göbel, Shaki, & Fischer, 2011). It is hypothesized that one of the ways children 

make sense of symbolic numbers is to learn to represent numbers according to their 

spatial relations (e.g., 1 and 2 are “close together,” while 1 and 9 are “far apart.”). Said 

differently, spatial skills are predicted to play an active role in the development of 

children’s conceptualization and visualization of the various meanings of number (e.g., 

see Sella, Berteletti, Lucangeli, & Zorzi, 2017).  

 Moreover, the same spatial reasoning capacities that help ground various symbolic 

number relations may also help with the learning and representation of symbolic 

mathematics more generally (Lakoff & Núñez, 2000). That is, spatial visualization skills 

are hypothesized to play a critical role in one’s ability to model, simulate, and form 

mathematical relationships. Accordingly, spatial visualization skills may provide a means 

to conceptualize numbers as ascending from left to right (akin to a number line), but also 

allow one to visualize and model various other mathematical transformations, such as the 

decomposition of 12 into a unit of 10 and 2. In sum, spatial visualization skills might 

represent one cognitive tool which children draw from to learn and make sense of not 

only basic numerical relations but novel and higher-level mathematics as well.  

In the present study, we targeted spatial visualization skills by including measures 

of mental rotation and visual-spatial reasoning. These measures were selected as they 

were hypothesized to involve the recruitment of spatial visualization in the service of 

solving novel visual-spatial problems. More generally, we operationalized spatial 

visualization as a construct involving the “generation” or “creation” of visual-spatial 

solutions to problems (e.g., imagining how a folded and punctured piece of paper might 

appear when unfolded). We placed special emphasis on this aspect of spatial visualization 

(i.e., the need to generate mental images) in an effort to examine and better understand 

the hypothesized link between spatial thinking and mathematics described above. That is, 

one reason for the consistent relations between spatial and mathematical thinking may be 

due to the shared task requirements involved in the generation and manipulation of 

visual-spatial representations and solutions to problems in both respective domains.  
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2.2.2     Relations between Numerical Skills and 

     Mathematics 
 

Numbers – and their various relations with one another – lie at the heart of mathematics.  

As such, concerted efforts have been directed at studying how humans, and other species 

for that matter, perceive, represent, manipulate, and make sense of number. To date, the 

study of basic numerical skills has been approached through various paradigms that target 

the measurement of an individual’s numerical magnitude representations. For example, 

the speed and accuracy in which individuals can compare and select the larger of two 

numerical magnitudes (5 vs. 3 or  vs. ) is a commonly used approach to assess the 

precision of an individual’s mental representation of number (Siegler, 2016). There is an 

extensive body of research linking individual differences in magnitude comparison tasks 

and various measures of mathematics. In general, children and adults who are faster and 

more accurate at comparing numerical symbols (5 vs. 3) and nonsymbolic number (  vs. 

), tend to also do better on higher-level mathematical tasks, such as arithmetic 

(Schneider et al., 2017).  

 Another important marker of an individual’s basic number skills relates to their 

understanding and processing of numbers as ordered sequences (i.e., ordinality). 

Performance on ordinality tasks, typically assessed by the speed and accuracy in which an 

individual can recognize ordered numerical sequences (e.g., 4-5-6; 5-7-9), are thought to 

index the strength of an individual’s associations of numerical relations. Research 

indicates positive relations between children and adults’ ordinality skills and mathematics 

performance (Lyon’s et al., 2014: Lyons, Vogel, & Ansari, 2016).   

Taken together, current research in the field of numerical cognition point to 

magnitude and ordinal processing skills as foundational numerical competencies with 

strong links to more formal mathematics. For this reason, the current study included 

measures of children’s magnitude comparison (symbolic and nonsymbolic) and ordinality 

skills as key indicators of the targeted construct of numerical ability.  

The hypothesized causal link between basic numerical skills and higher-level 

mathematics is rather straightforward: Mathematics is a particularly hierarchical subject, 
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where earlier learned concepts and skills are needed to give rise to new and more 

advanced mathematical knowledge, and thus, basic numerical skills represent and serve 

the role of fundamental building blocks.  

 

2.2.2     Relations between Executive Functions and 

     Mathematics 
 

The last decade has seen a sharp rise in research linking executive functioning (EF) and 

mathematics achievement (e.g., see Cragg & Gilmore, 2014). Although definitions vary, 

EF is most typically defined as a suite of highly related but separable cognitive control 

abilities that includes working memory, inhibitory control, and shifting or flexible 

attention (Friedman & Miyake, 2017; Miyake et al., 2000). Each sub-component has been 

found to both concurrently and longitudinally predict mathematics achievement (Cragg & 

Gilmore, 2014). Working memory, in particular, has been found to be a consistent 

predictor of mathematics (Friso-van den Bos, van der Ven, Kroesbergen, & van Luit, 

2013; Fuchs et al., 2010), with especially strong relations between visual-spatial working 

memory (VSWM) and mathematics performance (Reuhkala, 2001). Despite evidence and 

theory to suggest that all three of these components are related and represent a unified 

construct (i.e., EF; Miyake et al., 2000), there is a scarcity of research studying relations 

between EF and mathematics at the latent variable level. Thus, it remains to be shown 

how EF – as a unified construct – relates to mathematics achievement.  

In the present study, we attempted to measure EF by including measures of 

VSWM as well as a single behavioral measure of EF (i.e., the Head-Toes-Knees-

Shoulders task; Ponitz et al., 2009); a comprehensive measure thought to tap into each 

sub-component of EF, but most notably inhibitory control (McClelland & Cameron, 

2012). The decision to target VSWM also allowed us to test the extent to which spatial 

ability and VSWM represent potentially distinct constructs.      

 Given that many mathematics tasks are complex and involve multi-step solutions, 

EF skills have been theorized to play a critical, if not causal, role in mathematics learning 

and performance. Moreover, different components of EF have been proposed to play 

unique roles in the service of different mathematical goals. For example, working 
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memory is called upon to remember the specifics of a given problem as well as to 

temporarily hold partially completed solutions in mind while performing other aspects of 

the problem. Inhibitory control is needed to ignore or suppress certain responses in favor 

of other more appropriate responses (e.g., inhibiting knowledge of whole number 

operations when dealing with fractions). Shifting or flexible attention is recruited when 

switching between different operations, such as problems that involve both addition and 

subtraction. From these examples, it can be seen how individual differences in EF skills 

may constrain one’s capacity to learn and carryout various mathematical tasks.  

 

2.3     Main Questions and Hypotheses 
 

2.3.1     Rationale for Testing a Four-Factor Model 
 

The first goal of this study was to carry out a confirmatory factor analysis (CFA) to 

examine the degree of evidence in favor of a four-factor model, with factors 

corresponding to numerical, spatial, EF, and mathematical constructs. Based on theory 

and a small body of empirical research suggesting the existence of highly-related, but 

distinct constructs, we had reason to expect similar findings. For example, Mix et al. 

(2016) found evidence to suggest that spatial and mathematical abilities represent 

separate, but highly overlapping, constructs in a cross-sectional sample of children aged 5 

–13. In adults, Miyake et al. (2001) demonstrated that spatial abilities and EFs are highly 

related factors and distinguishable to the extent that the spatial abilities measured were 

theorized to involve high executive demands. For example, latent variables related to 

spatial visualization and EF skills were highly related to one another (.91) compared to 

relations between spatial perceptual speed and EFs (.43). The extent to which spatial 

abilities and EFs represent separate factors in children is currently unknown. The present 

study aims to shed light on this issue.   

To our knowledge, researchers have yet to examine the latent structure of basic 

numerical skills (e.g., basic understandings of numerical symbols and their associated 

magnitudes) and its relations with constructs related to spatial, EF, and mathematical 

abilities.  However, prior research using single indicator variables has revealed consistent 
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relations between basic numerical and spatial skills (e.g., see Newcombe, Levine, & Mix, 

2015), as well as basic numerical skills and EFs (e.g., see Cragg et al., 2017). Effect sizes 

related to these studies are typically in the moderate range and provide reason to suspect 

that numerical skills will share both overlapping and unique variance with spatial and EF 

skills. However, the extent to which basic numerical skills and mathematics achievement 

represent distinct constructs remains an open question. Moreover, if such a distinction 

does exist, what construct might spatial ability share more variance with? How might EF 

skills modify these relations?  

 With these questions in mind, we examined the latent structure of constructs 

related to numerical, spatial, EF, and more general mathematical skills. Given empirical 

evidence suggesting overlapping but unique relations between each construct, along with 

general consensus that each construct does indeed refer to something specific, we 

predicted that results of a CFA would offer support for a four-factor model. However, it 

should be noted that this is the first CFA that we are aware of that tests evidence for all 

four factors in the same model. It is possible, given their high associations with one 

another, that a single factor (i.e., general intelligence or g) might emerge as the best 

model fit of the data. Thus, to rule out this possibility, we also ran an exploratory analysis 

of a single-factor (g) model for comparison purposes.  

 

2.3.2     Which Construct Does Visual-Spatial Working 

     Memory Belong to: Spatial or EF? 
 

Another follow-up objective of testing the four-factor model was to examine the extent to 

which measures of visual-spatial working memory (VSWM) load more closely on the EF 

versus spatial factor. Currently, the decision to classify VSWM as a marker of spatial 

ability or EF is up to individual researchers and it is not always clear whether such a 

decision is theoretically guided or post hoc. Here, we make the prediction that VSWM is 

better characterized as an indicator of EF than spatial visualization ability. This prediction 

was theoretical and made a priori based on the following criteria: Although both 

constructs are similar in that both are presumed to place heavy demands on cognitive 

control, there are some important distinctions in task requirements that potentially result 
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in differential relations with mathematics. The EF measures were selected based on their 

involvement of working memory and inhibitory control. These measures were selected as 

“recall-based” measures; they require the storage and recall of information. In contrast, 

the spatial reasoning measures were selected based on their heavy demands on spatial 

perception, reasoning, and most notably, spatial visualization. More specifically, each 

spatial task required participants to reason and visualize solutions to problems involving 

parts of objects in relation to their whole.   Critically, the spatial measures are distinct 

from the EF measures in that they are “prospective” or “generative” in nature. Thus, the 

spatial measures place a low demand on recall of information and place a heavy demand 

on the visualization or modeling of problems and their solutions. As detailed further 

below, loading VSWM on the EF factor also allowed us to test the important question of 

whether spatial visualization makes unique contributions to mathematics over and above 

EF skills.   

 

2.3.3     Differentiated Pathways to Mathematics 

     Achievement 
 

Given sufficient evidence for the existence of a four-factor model, our second objective 

was to test the shared and unique contributions of each predictor variable with 

mathematics achievement. As reviewed above, separate bodies of research have identified 

numerical, spatial, and EF skills as robust and consistent predictors of mathematics 

achievement. For this reason, we expected the combination of factors to explain a large 

proportion of variance in children’s mathematics performance. To our knowledge, this is 

the first study to include each construct within the same model and to simultaneously 

examine the extent to which each cognitive construct uniquely relates to mathematics 

achievement. Therefore, it is currently unknown how each variable relates to one another 

and potentially afford differential pathways to mathematics achievement. However, as 

reviewed above, each cognitive construct in the current study has been posited to 

differentially explain individual differences in mathematical performance. A metaphor of 

building a house serves as an example: Whereas basic numerical skills represent the 

fundamental building blocks (bricks), spatial visualization skills are considered a tool in 
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which to manipulate and assemble the bricks, and EF skills place certain constraints, such 

as rules and regulations, on the building process.  

  

2.3.4     Does Age Moderate Potential Relations between 

             Constructs? 
 

As a follow-up to the above objective and analyses, we were interested in testing the 

extent to which age might moderate the observed relations. One reason for targeting the 

selected age-range (4- to 11-year-olds) was to better understand how each one of these 

foundational skills develop and potentially interact with one another across the early to 

middle childhood years. While separate bodies of research suggest that each construct 

undergoes rapid development during this time frame (e.g., see Mix, Huttenlocher, & 

Levine, 2002; Newcombe & Huttenlocher, 2003; Zelazo, Carlson, & Kesek, 2008), we 

currently know very little about the potential influence of age on these relations. Given 

that children’s numerical, spatial, and EF skills have all been posited to play a critical role 

in children’s mathematical development, it is important to better understand the potential 

impact that age might have on these various relations. This information, in turn, may be 

useful when designing educational interventions. Thus, an important question concerns 

the extent to which relations between constructs remain consistent across time or show 

evidence of change during specific periods of development.  

 

2.3.5     Uncovering the Space-Math Association 
 

Our third, and most theoretically-guided objective, involved working towards an 

improved understanding of the space-math association. Critically, the inclusion of the 

targeted constructs provided opportunities to test specific hypotheses about the underlying 

nature of this relationship. Namely, we sought to determine the potentially mediating 

roles of children’s numerical and EF skills in the relation between spatial visualization 

and mathematics achievement.  
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Reasons to suspect that numerical skills might mediate the space-math link 

includes research pointing to the fundamental importance of spatial thinking in the 

acquisition and development of basic numerical competencies (Dehaene, 2011; Geary, 

2004). Indeed, there is evidence that both numerical and spatial cognition rely on highly 

similar neural networks (e.g., see Hubbard et al., 2005; Toomarian & Hubbard, 2018). 

This has led some to speculate that reasoning about symbolic number – a relatively recent 

cultural invention – is rooted in more evolutionarily adaptive neural networks specialized 

for performing various visual-spatial tasks, such as using and reasoning with objects and 

tools (Anderson, 2010; Dehaene & Cohen, 2007; Lakoff & Núñez, 2000). Moreover, not 

only do numerical and spatial processing appear to share biological underpinnings, but 

they also appear to share close conceptual links (Lakoff & Núñez, 2000; Marghetis, 

Núñez, & Bergen, 2014). One proposal is that the learning of the number system involves 

the mapping of numbers to space, a process that has been found to implicate higher-level 

spatial skills, such as spatial visualization (Gunderson et al., 2012; Marghetis, Núñez, & 

Bergen, 2014; Sella et al., 2017). For example, children’s ability to estimate the locations 

of numbers along a physical number line, has been found to mediate relations between 

spatial skills and mathematics performance (Gunderson et al., 2012; LeFevre et al., 2013; 

Tam, Wong, & Chan, 2018). These findings dovetail with theoretical claims that the 

development of number knowledge corresponds to the refinement of one’s ‘mental 

number line’ (Dehaene, 2011; Siegler & Booth, 2004; Siegler & Ramani, 2008). In the 

current study, we look to extend this finding by testing whether or not basic numerical 

skills more generally mediate the space-math link.     

However, this is but one pathway in which spatial ability is potentially linked to 

mathematics. Moving beyond basic numerical-spatial associations, spatial skills may also 

be recruited and utilized across a breadth of mathematical tasks, including those that are 

more distally related to basic numerical processing, including geometric reasoning. 

Moreover, as discussed earlier, reasoning about numbers in novel contexts, as is required 

in word problems, algebra, or even arithmetic, may be augmented through the mapping 

and modeling of these various mathematical relations onto space. We suspect that the 

same spatial system that allows one to both map and conceptualize numbers along a 

‘mental number line,’ is the same system that allows one to map, model, and 
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conceptualize various other abstract mathematical relations (e.g., see Lakoff & Núñez, 

2000; Marghetis, Núñez, & Bergen, 2014). Accordingly, we predicted that spatial ability 

would relate to mathematics indirectly through its relation with basic numerical skills, but 

also directly, due to spatial processes that are not specific to number. 

Another reason why spatial skills and mathematics may be linked is due to the 

high executive demands of spatial tasks (e.g., see Miyake et al., 2001). It is possible that 

spatial tasks are essentially a proxy for EF. Indeed, although a large body of research 

demonstrates close connections between spatial and mathematical thinking (Mix & 

Cheng, 2012), it remains to be tested whether EF skills might serve as the common and 

potentially explanatory source for this relationship. Said differently, it could be the case 

that spatial thinking is only related to mathematics insomuch as the spatial tasks also 

recruit and rely on executive functions, such as working memory and inhibitory control.  

By testing the mediating role of EF in the space-math association, we were able to test the 

extent to which the space-math link might be explained by individual differences in 

children’s EFs. If the space-math link is fully attributable to children’s EF skills than we 

should expect full mediation. If the space-math link is best explained by children’s spatial 

skills, over and above EF skills, then we should not expect strong evidence of mediation. 

However, if spatial and EF skills represent distinct constructs with differentiated relations 

to mathematics achievement – as current theory suggests – we should expect to find 

evidence of both direct and indirect relations between spatial skills and mathematics 

achievement. This finding would provide evidence of both shared and unique relations 

with mathematics. Indeed, we predicted that EF skills would explain some of the shared 

variance between spatial ability and mathematics performance, but would not fully 

account for the space-math relation. As outlined above, we hypothesized that differences 

in the “generative” versus “recall” requirements of the spatial and EF tasks, respectively, 

should result in separate factors but also differential relations with mathematics 

performance.  

 

2.3.6     Different Pathways for Different Mathematical 

     Reasoning 
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Our final objective dealt with issues around the multidimensionality of mathematics. 

Mathematics is not a unified construct and represents multiple components and skills sets 

(Mix & Cheng, 2012). Yet, most researchers use arithmetic or calculation-based tasks as 

mathematics outcome measures. Although arithmetic represents a foundational 

mathematics skill, more comprehensive mathematics outcome measures are needed to 

capture the type of mathematics that is more representative of the subject as a whole. 

Furthermore, multiple measures of the different branches of mathematics are needed to 

better capture specific relations amongst cognitive skills and different aspects of 

mathematics. In the current study, numeration and geometry were selected as the two 

outcome measures of mathematics and used in combination to form the mathematics 

achievement factor. However, we were also interested in how numerical, spatial, and EF 

skills might differentially relate to numeration and geometry as separate outcome 

measures of mathematics. It was predicted that spatial skills will best predict geometry 

performance, numerical skills will best predict numeration performance, and EF skills 

will equally predict both. Although these predictions are relatively straightforward, they 

are a necessary first step in moving towards a more nuanced picture of the cognitive 

foundations of mathematics performance.   

  

2.4     Methods 
 

2.4.1     Participants 
 

Three-hundred and sixteen 4- to 11-year-olds (kindergarten – 4th grade) participated in the 

study (Mage=6.68 years, SD=1.40: Females=165). The mean age was the same for males 

(Mage=6.74 years) and females (Mage=6.62 years), t(314) = -0.81, p = .42. Table 2.4 

provides a summary of the number of children and mean ages for each grade level. The 

sample was drawn from eight schools located in both rural (n=6) and urban communities 

(n=2) in northwestern and southwestern regions of Ontario, Canada. Based on 2016 

Canadian census data, all participating schools serve communities with family income 

levels below the Canadian median ($70,336), ranging from $55,936 to $68,062. The 

schools represent a range of low-to-moderately high performing schools in mathematics 
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based on available standardized provincial test scores. Exactly half of the sample 

identified as Indigenous peoples of Canada; 94% identified as Anishinaabe and 6% 

identified as Métis.1 Based on available 2016 census data, the vast majority (>95%) of the 

remaining population identified as Caucasian. Note that although all 316 participants 

were included in the analyses, data were incomplete or missing for performance on 

individual measures due to time restrictions (109 cases) or the child’s inability to 

understand task requirements (46 cases). Missing data accounted for 4% of all cases. 

Written consent was provided by a parent/guardian for all participants and research was 

carried out in agreement with the ethics boards of the University of Toronto and 

University of Western Ontario.  

 

2.4.2     Measures and Testing Procedures 
 

Participants completed a cognitive test battery involving eleven separate measures (see 

Table 2.1). All measures were selected from previously published research. Participants 

completed the measures in pseudo-random order and in two approximately 30-minute 

sessions (1-5 days apart). Due to the nature of the tests, the following measures were 

presented within ordered blocks: Symbolic number comparison, nonsymbolic number 

comparison, and ordering; path span forward and path span reverse; and KeyMath 

numeration and KeyMath geometry. All tests were carried out in a quiet location of the 

child’s school (e.g., empty classrooms or private testing rooms) and were administered 

one-to-one by trained experimenters. The details of each test are provided below.  

  

 

                                                

1 Note that information on Indigenous status was not collected at two of the participating 
schools due to prior knowledge that these schools predominantly serve Caucasian 
populations and an extremely low number of Indigenous students; e.g., the 2016 census 
listed the number of Indigenous families in these communities at zero. For this reason, we 
did not see a need to inquire about Indigenous status at these schools.  
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2.4.2.1     Description of Numerical Indicators 
 

The following three measures were adopted from Lyons et al. (2018) and presented to 

participants in a paper booklet (12 items per page). Participants marked their responses 

using a pencil. For all three tasks, children were provided with 1 minute to complete as 

many items as possible. The tasks were presented to children in the order in which they 

are described below. Both the symbolic and nonsymbolic comparison tasks consisted of 

72 items and the ordering task consisted of 48 items. For all three measures, the same 

scoring procedures were used: To adjust for potential speed-accuracy trade-offs or 

guessing behavior, adjusted raw scores were computed by subtracting the total number of 

incorrect items from the total number of correct items (see Lyons et al., 2018).  

Symbolic Number Comparison: Participants were presented with pairs of Hindu-Arabic 

numerals (e.g., 4  |  9) and asked to indicate the larger of two numerals as quickly as 

possible. Numerals ranged from 1–9, with absolute numerical distances (N1 - N2) of 1 to 

3. All 15 combinations of 1–9 with distances of 1 or 2 were included as well as three 

combinations with distance 3 (1|4; 3|6; 6|9). This resulted in 18 possible combinations. 

Trials were counterbalanced to ensure that the larger number appeared on the left and 

right side of the page an equal number of times. 

 

Nonsymbolic Number Comparison: Participants were presented with pairs of dot arrays 

(e.g.,  :  |  ::) and asked to select the array with the most dots as quickly as possible. Dot 

arrays ranged from 1–9 dots and included the same numerical distances as those used in 

the symbolic task. That is, 18 combinations of dot arrays were used and were 

counterbalanced in the exact same order as the symbolic task. This was done to allow for 

direct comparison between the symbolic and non-symbolic versions of the task (e.g., see 

Lyons et al., 2018).  Children were instructed not to count the dots. In an effort to control 

for the influence of the continuous properties of the dot stimuli on performance, both area 

and contour length were manipulated and controlled for across trials. More specifically, 

on half the trials dot area was positively correlated with numerosity and overall contour 

length was negatively correlated with numerosity. On the other half of the trials the 
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opposite was true. Thus, relying on either area or contour length to would result in chance 

performance (Gebuis & Reynvoet, 2012).  

 

Ordering Task:  Participants were presented with a sequence of numerals (e.g., 2 – 3 – 4) 

and asked to indicate whether or not the sequence was in numerical order (i.e., are the 

numerals in an ascending sequence?). Numerals ranged from 1–9, with absolute 

numerical distances of 1 (e.g., 2 – 3 – 4) or  2 (e.g., 2 – 4 – 6). There were an equal 

number of correct and incorrect sequences of distances 1 and 2.  For half of the items, the 

sequences were in correct ‘ascending order’ (e.g., 2 – 3 – 4 or 3 – 5 – 7) and for the other 

half, the sequences were in incorrect order (e.g., 2 – 4 – 3  or  5 – 3 – 7). Participants put 

a line through a checkmark to indicate when the sequence was believed to be in order and 

a line through an ‘X’ when the order was not believed to be in order.  

 

2.4.2.2     Description of Spatial Indicators 
 

2D Mental Rotation: This measure was adapted from Levine et al.’s (1999) Children’s 

Mental Transformation Task (CMTT); a widely used measure of young children’s spatial 

visualization skills, namely mental rotation (Ehrlich, Levine, & Goldin-Meadow, 2006; 

Gunderson et al., 2012; Hawes, LeFevre, Xu, & Bruce, 2015). Children were presented 

with two halves of a shape, bisected either along the horizontal or vertical line of 

symmetry (e.g., a diamond that has been divided into two triangles) and separated and 

rotated 60° from one another on either the same plane (direct rotation items) or diagonal 

plane (diagonal rotation items). Four response items (2D shapes) were presented in a 2 x 

2 array below the bisected shape. For each item, children were asked to point to the shape 

that could be made by putting the two pieces together (e.g., a diamond can be made by 

rotating and translating two triangles). There were 16 items in total; half of which 

required direct rotations and half of which required diagonal rotations. Note that we 

modified the original measure by only including items that involved mental rotation (we 

eliminated items that required translations only). This modification has been shown to 

make the task more difficult and more appropriate for our targeted grade range (K-3; e.g., 
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see Casey et al., 2018; Hawes et al., 2015). Each item had one correct response. Children 

were awarded one point for each correct response. 

  

Visual-Spatial Reasoning: This measure was adapted from Hawes et al. (2017) and was 

designed as a comprehensive measure of children’s spatial visualization skills. The test 

consists of 20 items divided into four different problem types: missing puzzle pieces (two 

variations), mental paper folding, and composition/decomposition of 2D shapes. For each 

problem, children were asked to identify the correct answer among four options. One 

point was awarded for each correct response.  

 

Raven’s Progressive Matrices: This is a widely used measure of children’s visual-spatial 

analogical reasoning (Raven, 2008). Previous research has shown that performance on the 

task can be linked to a latent spatial visualization factor (Lynn, Backhoff, & Contreras-

Niño, 2004; also see Kunda, McGreggor, & Goel, 2010). For each item, participants are 

presented with a partially completed visual-spatial pattern and must select from amongst 

six alternatives the puzzle piece that will complete the pattern. The test consists of 36 

items. One point was awarded for each correct response. 

   

2.4.2.3     Description of Executive Function Indicators 
 

Head-Toes-Knees-Shoulders Task (HTKS): This measure was adapted from Ponitz et al. 

(2009). The task requires children to engage in flexible attention, working memory, and 

inhibitory control (McClelland & Cameron, 2012) and closely aligns with Miyake et al.’s 

(2000) model of executive functioning. For each item, children listen to an instruction to 

touch a body part (e.g., “Touch your head”) and then must touch a paired “opposite” body 

part (e.g., toes). Head and toes represented one pair and shoulders and knees represented 

the other pair. The test was divided into two sections. In the first section, participants 

were only asked to deal with one pair of body parts (head and toe pairings or shoulder and 

knee pairings). These pairings were counterbalanced across tests and participants were 

randomly administered a test version that started with the head and toe pairings or one 

that started with shoulder and knee pairings. The second section included both pairings. 
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Both sections included 10 items. For each item participants were given a score of 0, 1, or 

2; a score of 0 corresponded to incorrect body movements (touching one’s head when 

asked to touch their head), a score of 1 corresponded to a self-corrected body movements 

(initiating movement towards the wrong body part and then making a correction), and a 

score of 2 corresponded to correct body movements (touching one’s toes when asked to 

touch their head). Children were given a total score out of 40.  

Forward Path Span: This task was completed on an iPad and used to measure children’s 

working memory, a key component of executive functioning (Miyake et al., 2000). 

Participants were presented with a set of nine randomly arranged green circles and 

instructed to watch as the circles lit up one at a time. Each circle was presented for .6 

seconds, with .5 seconds of wait time between presentation. Participants then attempted to 

recall the sequence by touching/tapping the circles in the same order in which they were 

presented. Following a practice trial, participants began by attempting two trials at a 

sequence length of two. Upon successful recall of one or two sequences the child 

progressed to the next level. The task was discontinued when the child failed to recall 

both sequences at any given level. Children were assigned a score based on the total 

number of correct sequences recalled.  

 

Reverse Path Span: This task was identical to the one above but required participants to 

recall the given sequence in reverse order. For this reason, this task is considered to place 

even more demands on executive control. For more information and to access both path 

span tasks see: http://hume.ca/ix/pathspan.html 

 

Note that we did not include a manifest measure of shifting ability. This decision was 

based on research indicating that the working memory and inhibitory components of EF 

are stronger predictors of mathematics than shifting (e.g., see Cragg & Gilmore, 2014). 

Moreover, shifting skills are presumably implicated in the HTKS task (McClelland & 

Cameron, 2012).  
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2.4.2.4     Description of Mathematics Achievement 

                Indicators 
 

To assess children’s mathematics achievement, we used the Numeration and Geometry 

subtests of KeyMath (Connolly, 2007). We selected KeyMath as our mathematics 

outcome measure because it is a standardized Canadian normed test and the items 

represent a broad range of content knowledge closely aligned with the Ontario 

mathematics curriculum. The test is administered with an easel booklet and each problem 

refers to information presented in the form of an image and/or writing. The test is 

adaptive in that it begins by establishing baseline performance and continues with 

questions of increasing difficulty. The test is discontinued when the child answer four 

questions incorrectly in a row. Thus, the test captures a range of children’s mathematics 

skills and not all children are administered the exact same questions. Moreover, because 

the test is adaptive and continues until a ceiling level of performance is established 

children are almost inevitably presented with novel mathematical content. The majority of 

questions are also novel in that they require children to apply their knowledge of 

mathematical concepts, facts, and procedures within contexts likely unfamiliar to the 

students (e.g., rather than solving a standard arithmetic problem children must apply their 

knowledge of arithmetic to solve a problem dealing with combinations of block 

structures). The majority of items in both subtests require knowledge of the symbolic 

number system. Children were awarded a total raw score by subtracting the total number 

of incorrect responses from the maximum item number reached.  

    

Numeration Test: This measure includes a total of 49 questions related to counting, 

comparing quantities, recognizing and ordering number symbols, operations, place value, 

and proportions/fractions/decimals.  

 

Geometry Test: This measure includes a total of 36 questions related to shape recognition, 

positional language, geometrical transformations (e.g., rotations), measurement, grid 

coordinates, angles, geometric proofs.  
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Table 2.1 
 
Summary of measures used in the study 
 

Measures Task Description                 Example Items 

Numerical Measures 

  Symbolic Number Comparison 

 

•   Participants select the numerically larger of  
  two Hindu-Arabic Numerals 

• 1 minute to complete as many items as    
possible 

 

Nonsymbolic Number Comparison 

 

• Participants select the numerically larger of 
two dot arrays 

• 1 minute to complete as many items as 
possible 

 

Ordering 

 

• Participants indicate whether or not a 
sequence of numerals are in numerical order 

• 1 minute to complete as many items as 
possible  

 

Spatial Measures  

 Visual-Spatial Reasoning 

 

• Participants are presented with 4 different 
types of ‘spatial puzzles’ requiring 
participants to visualize solutions to partially 
completed puzzles, 
composition/decomposition tasks, and mental 
paper folding challenges  

 

      “Which three pieces will go     
 together to make the shape 
above?” 

2D Mental Rotation 

 

• Participants select amongst four options a 
given shape that can be made by mentally 
rotating and translating two separated shapes 

 

Raven's Matrices 

 

• Participants are presented with a partially 
completed image or visual-spatial pattern and 
must select amongst 6 options the piece that 
best completes the image/pattern  

 

Executive Function Measures  

 Head-Toes-Knees-Shoulders 

 

• Participants touch the opposite body part of 
the one instructed 

 

 

  “When I say touch your 
   head,  I really want you  
   to touch your toes” 

VSWM - Forward Path Span 

 

• Participants are presented with a random 
sequence of green dots on an iPad screen and 
watch as individual dots light up one at a time 

• Participants recall the exact sequence  
 

VSWM - Reverse Path Span 

 

• Participants are presented with a random 
sequence of green dots on an iPad screen and 
watch as individual dots light up one at a time 

• Participants recall the exact sequence but in 
reverse order in which they occurred  
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Mathematics Measures  

 Numeration 

 

• Comprehensive suite of questions targeting 
numeration, including questions related to 
counting, ordering, operations, place value, 
fractions/proportions/decimals  

 
“How many more dots are needed to 
make ten?” 
 

 

Geometry 

 

• Comprehensive suite of questions targeting 
geometry, including questions related to shape 
recognition, positional language, 
transformations, measurement, angles, proofs 
and formulas 

 
“Here are three shapes. Which 
shape will have the most green 
squares when it’s filled 
completely?” 
 

Note that for copyright reasons the example items for Raven’s matrices, numeration, and geometry measures were reproduced 
and do not constitute direct replicas of the actual items. Also note that the for the actual 2D mental rotation task, the bisected 
shape was presented above the four response items. VSWM = visual-spatial working memory.  
 

2.4.3     Analytical Approach 

Analyses were carried out using the recommended two-step approach to structural 

equation modeling (SEM; see Kline, 2015). The first step involved testing the 

measurement model using confirmatory factor analyses (CFA). The purpose of the 

measurement model is to test and observe the relations between the observed variables 

(aka indicator or manifest variables) and the relations these variables have with the 

hypothesized construct or constructs (aka factors or latent variables). Failure to obtain 

adequate fit statistics at this stage may indicate the need to reconsider the model and/or 

make modifications to the model. The second step involved analyses of the full structural 

equation model(s). The purpose of this step is to test hypothesized interrelations between 

constructs/factors and is similar in some ways to general linear regression models. 

However, a major advantage of SEM over general linear models is that SEM takes error 

variances into account (regression analyses assume variables are measured without error: 

see Weston & Gore, 2006) and allows one to model both variability common to a latent 

variable (i.e., error-free scores) as well as the variability not explained by the latent 

variable (i.e., error). Moreover, SEM allows for the creation of weighted aggregate 

variables of targeted constructs. That is, latent variables are not merely an average of 

scores obtained across different measures but a composite score that has been weighted 
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according to the various contributions that each indicator variable makes to the construct 

of interest. 

 Analyses were performed with Mplus Version 7.4 (Muthén and Muthén, 1998-

2015) using the default maximum likelihood estimation (MLE) procedures. All analyses 

were conducted on raw (continuous) scores. Modification indices were requested for chi-

squared values equal to or greater than 10. Missing data (4% of all cases) were treated 

with full information likelihood (FIML) estimation procedures (the default option in 

Mplus). Confidence intervals were computed using Mplus’ bias corrected bootstrapped 

confidence interval procedure. Note that the following link provides an annotated copy of 

the Mplus scripts used for each of our analyses along with the corresponding 

output/results (https://osf.io/2y7xu/ ).    

 We used three goodness-of-fit statistics to compare our CFA models and 

determine model fit: (1) Root Mean Square Error of Approximation (RMSEA), (2) 

Comparative Fit Index (CFI), and (3) Standardized Root Mean Residual (SRMR). 

Decisions about what constitutes acceptable or ‘good’ model fit were based on the 

following recommendations: RMSEA values of less than .10, and CFI values > .95, and 

SRMR values < .08 (Kline, 2015). Note that we also report chi-squared (χ 2) values for 

comparison purposes but due to the large sample size (>200) did not interpret statistically 

significant results in any meaningful way (see Kline, 2015).  

  Power analyses were conducted to determine the minimum sample size needed to 

detect a medium effect size with an alpha of = .05 and power = 0.95 (Soper, 2018).  Using 

a SEM with four latent variables and 11 indicator variables, the results indicated a 

recommended sample size of 241 participants.  

 

2.5     Results 

2.5.1     Part I: Measurement Model  

Table 2.2 shows the descriptive statistics for each measure. As can be seen, the kurtosis 

and skewness values of each indicator variable fall within the acceptable limits of ±2 

(Field, 2009). Table 2.3 shows the bivariate zero-order correlations between all variables. 
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As can be seen, there were moderate to high correlations between all measures included 

in the measurement model (.42 – .83): Note that age was included as covariate in the 

structural models, but not the measurement model, as we had little reason to suspect 

measurement invariance across age (see section 7.2.2. for analyses related to the 

moderating effects of age). Scatter plots were used to visualize the data distributions 

between all variables and no concerns were noted (e.g., nonmorality, lack of 

homoscedastic, outliers). Furthermore, data were screened to ensure normal distributions 

of performance for each task across each grade level. These analyses indicated relative 

normal distributions across tasks and grades. Table 2.4 provides a summary of the number 

of children and mean scores for each grade level.  

In total, five different CFA models were run on the data and associated covariance 

matrix (see Table 2.5 for summary of each model run). Of primary interest was to test the 

hypothesized four-factor measurement model. The results of this model indicated good fit 

statistics, with the RMSEA value (.057) below the recommended cut-off of .10 and the 

CFI value (.983) above the recommended threshold of .95 (Kline, 2015). The high CFI 

value suggests that the model is superior to a “null” model or one that assumes zero 

correlations between the variables. Importantly, the recommended modification indices 

were relatively low (MIs < 17) and inconsequential to the overall model fit. These 

recommendations ran contrary to the theoretical model (later to be tested with SEM), as 

they implicated cross-loadings between the mathematics outcome variables and 

individual indicator variables. Overall, the results provide support for a four-factor model.  

 Although the four-factor model demonstrated good fit statistics, we tested four 

alternative models. These modifications served the purpose of hypothesis testing as well 

as attempts to improve the overall model fit. The first of these modifications included the 

removal of the path span reverse indicator (a measure of VSWM) from the Executive 

Function Factor and including it as an indicator of the Spatial Factor. This modification 

was justified based on the grounds that the task demands share some features with the 

other spatial ability measures (i.e., require storage and manipulation of visual-spatial 

information) and has been used in prior investigations as a measure of spatial ability. The 

modification did not improve the model. As can be seen in Table 2.5, the change resulted 

in a slight increase in the chi-square value and a small increase in the RMSEA values. As 
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a follow-up to this analysis, and based on a similar rationale, another modification was 

made in which both VSWM measures were made to load on the Spatial Factor. The 

HTKS variable was converted into a single indicator latent variable. This was achieved by 

multiplying the mean/variance associated with the HTKS measure (120.307) with a 

reasonable estimate of assumed error variance (.20; see Kline (2015) for more details on 

this approach). This modification did not improve the model fit. Thus, there appears to be 

little difference between a model that includes a well-defined Spatial Factor with three 

indicator variables and a more comprehensive, yet less defined, Spatial Factor with five 

indicator variables. To further test the relative separability of the Spatial Factor from the 

EF factor, a three-factor model was carried out in which the spatial and EF measures were 

made to load on the same factor. Although this model demonstrated good fit (see Table 

2.5), it failed to achieve the same quality of fit statistics of the four-factor model. Results 

of a nested chi-square difference test revealed statistically significant differences between 

the four-factor (Model 1) and the three-factor model (Model 4); χ2 (3) = 32.56, p < .001. 

These results suggest that spatial and EF skills – as measured in the present study – 

represent distinct constructs.   

Finally, a measurement model was evaluated in which all predictor variables were 

made to load on a single general factor (i.e., g). The rationale for such a modification was 

based on recent research suggesting that general intelligence, or a g-factor, might be 

responsible for previously observed relations between cognitive variables and academic 

achievement (e.g., see Ritchie, Bates, & Deary, 2015). Moreover, this modification was 

justified based on the relatively high correlations between all predictor variables. The 

results of this model indicated marginally acceptable fit (RMSEA = .101, CFI = .94), but 

worse fit statistics compared to the hypothesized four-factor model. Results of a nested 

chi-square difference test revealed statistically significant differences between the four-

factor (Model 1) and the single-factor model (Model 5); χ2 (5) = 105.03, p < .001. This 

suggests that the four-factor model fits the data significantly better than the one-factor 

model.   
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2.5.1.1     Summary of Results  

Overall, the five measurement models evaluated demonstrated acceptable fit statistics and 

any one of them could technically be retained and considered decent representations of 

the data. However, based on a priori theoretical decisions and the finding that models 1-4 

were all comparable in fit, the four-factor model was retained and used in all subsequent 

analyses.  

Figure 2.1 shows the final measurement model and the relations between factors 

as well as the relations between indicators and their residuals in relation to each factor. As 

can be seen, the correlations between factors are extremely strong (> .84), with a range of 

correlation values between .84 (spatial with numerical) and .94 (spatial and mathematics 

achievement). Despite high correlations between factors, multicollinearity analyses at the 

latent variable level revealed acceptable tolerance and VIF statistics (Spatial factor; 

tolerance = .402, VIF = 2.488: Numerical factor; tolerance = .370, VIF = 2.699: EF 

factor; tolerance = .423, VIF = 2.364). Note that mathematics was entered as the 

dependent variable in the model that was used to derive these statistics. Concerns of 

multicollinearity occur when the VIF statistic exceeds 10 and the tolerance statistic is 

below .10 (e.g., see O’brien, 2007). Accordingly, multicollinearity of factors does not 

appear to present a problem in the present study and further structural analyses were 

planned to potentially reveal the unique relations between factors.  

 The indicator variables also appear to adequately reflect the factors of interest as 

can be seen by the relatively low residuals. All indicators explain at least 50% of the 

variance with their associated factor. This is a desirable outcome and provides further 

evidence that the factors are adequately represented by their hypothesized indicator 

variables (Kline, 2015). 

 In sum, the four-factor model provides a good fit of the data, despite extremely 

high correlations between each factor. Thus, there is evidence to suggest that numerical 

skills, spatial ability, EF, and mathematics achievement are highly correlated but 

separable constructs.  
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Table 2.2 

Descriptive statistics for all measures and reliability estimates.    
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Table 2.3 

 

Zero-order correlations between variables.   
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Table 2.4 

Descriptive statistics showing the number of children and mean scores for each grade 

level. 

 
 

Table 2.5 

CFA (measurement model) goodness-of-fit statistics for original hypothesized model and 

four modified alternative models.  
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Figure 2.1   The four-factor measurement model and the one retained for further 

structural analyses. Double-headed arrows represent correlations between factors and 

single-head (unidirectional) arrows indicate factor loadings (interpreted as regression 

coefficients). The smaller circles with arrows leading to each indicator variable represent 

unexplained variance or residual/error terms (interpreted as proportions of unexplained 

variance). Note that correlations can be squared to determine the proportion of shared 

variance between variables (e.g., the proportion of shared variance between spatial ability 

and mathematics is .942 = .88).    

2.5.2     Part II: Structural Models  
 

2.5.2.1     Cognitive Predictors of Mathematics Achievement 

Our first set of structural analyses tested the unique and shared relations between the 

numerical, spatial, and EF factors and their predictive relations with mathematics 
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achievement. Figure 2.2 shows the various relations with one another after controlling for 

age2. Overall, the model explained a large proportion, .84, of the variance in mathematics 

achievement even after controlling for age. Both the numerical and spatial factors were 

unique predictors of mathematics achievement, β = .289, SE = .12, p = .013, 95% CI [.06, 

.52], 99% CI [-.01, .59] and β = .673, SE = .11, p < .001, 95% CI [.46, .88], 99% CI [.40, 

.95], respectively. Accordingly, a 1-unit increase on the numerical factor was associated 

with a .29 standard deviation unit increase on the mathematics factor, controlling for the 

effects of age, spatial ability, and EF skills. A 1-unit increase on the spatial factor was 

associated with a .67 standard deviation unit increase on the mathematics factor, 

controlling for the effects of age, numerical, and EF skills. The relation between the 

spatial and mathematics factors remains robust even at 99% CIs, whereas the relation 

between the numerical and mathematics factors is no longer statistically significant at 

99% CIs. There were no unique relations between the EF and mathematics factor once the 

numerical and spatial factors were taken into account, β = .056, SE = .17, p = .734, 95% 

CI [-.27, .38], 99% CI [-.37, .48].  

 A follow-up test was carried out to examine the possibility that the above results 

may have been driven by the inclusion of Raven’s Matrices as an indicator of spatial 

ability. Given that matrix reasoning is typically considered a measure of nonverbal 

intelligence and not necessarily a measure of spatial ability proper, it was important to 

determine whether the above results remained once this measure and its contributions 

were removed. Moreover, this allowed us to further isolate and more narrowly examine 

the effects of spatial visualization on mathematics achievement. The results were highly 

consistent with those reported above. Both the numerical and spatial factors remained 

independent predictors of mathematics, β = .302, SE = .12, p = .014, 95% CI [.06, .54], 

99% CI [-.01, .62] and β = .665, SE = .12, p < .001, 95% CI [.44, .89], 99% CI [.37, .96], 

respectively. There was no unique relation between EF and mathematics, β = .08, SE = 

.17, p = .630, 95% CI [-.25, .42], 99% CI [-.36, .53]. Notably, highly similar results were 

                                                
2 Hereafter, all analyses were carried out with age as a covariate at the individual variable level (i.e., scores 
on each manifest variable was regressed on each child’s age in months). Figure 2.2 represents the retained 
four-factor model; all subsequent analyses involve a deconstruction of this model in an attempt to better 
understand the potentially explanatory pathways that give rise to these observed relations.    
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obtained when Raven’s Matrices was used as a control measure. Both numerical and 

spatial performance were strongly related to mathematics performance, β = .38, SE = .13, 

p = .004, 95% CI [.12, .64], 99% CI [.04, .72], and , β = .60, SE = .12, p < .001, 95% CI 

[.37, .83], 99% CI [.30, .90]. Again, there was no unique relation between EF and 

mathematics, β = .10, SE = .17, p = .556, 95% CI [-.23, .42], 99% CI [-.33, .52]. These 

results demonstrate that the relation between spatial and mathematics performance 

remains strong when Raven’s Matrices is excluded from the analyses altogether, but also 

when it is included as general covariate in the model. Therefore, the relation between 

spatial ability and mathematics appears to be related to spatial visualization skills. Taken 

together, the results indicate that in combination, numerical, spatial, and EF skills explain 

a large proportion of the variance in mathematics performance. More specifically, the 

results reveal significant unique relations between numerical and spatial skills with 

mathematics achievement and no unique relations between EF and mathematics. Spatial 

ability appears to be an especially strong contributor to mathematics achievement, over 

and above contributions from EF and numerical skills.   
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Figure 2.2   Relations between cognitive predictors and overall mathematics achievement 

controlling for age. All pathways are significant (ps < .05) except for the path between EF 

and mathematics. All values represent standardized estimates.  

 

2.5.2.2     Stability of Performance Across Age 

To examine the extent to which scores on the various factors were stable across age, 

composite ‘factor’ scores were computed for each individual. Importantly, these scores 

are weighted according to each indicator’s contributions (i.e., performance on each test) 

to the latent construct of interest. In this way, composite scores are not merely an average 

score on a given number of measures. To test whether factor scores vary as a function of 

development, a grade (6) by factor (4) repeated measures ANOVA was carried out. 

Results revealed that mean factor scores differed significantly between grades, F(13.849, 

667.544) = 1.830, p = .032, ηp2 = .037. Follow-up Bonferroni corrected comparisons 

revealed statistically significant differences between factor scores only amongst the 

youngest grade tested (i.e., junior kindergarten); scores differed significantly from one 

another on the spatial versus mathematics factor (p=.007) and numerical versus 



 

76 

 

mathematics factor (p=.037). There were no other significant differences in factor scores 

in kindergarten through 4th grade. A Bayesian repeated measures ANOVA was carried out 

to further examine the strength of evidence for the presence of grade by factor 

interactions. These results revealed a Bayes Factor of .003, indicating extremely weak 

support for the hypothesis of grade by factor interactions. Overall, despite a statistically 

significant grade by factor interaction, a closer look at the data reveals highly similar 

developmental trajectories of each construct across age. Note that Mix et al. (2016) also 

reported consistent relations between space and mathematics across grades K, 3, and 6. 

Figure 2.3 provides an illustration of the relation between age and children’s individual 

factor scores. An analysis of potential differences in the slopes of each factor revealed 

statistically insignificant results, F(3, 1161) = .980, p = .402. There was also no 

statistically significant differences in the intercepts, F(3, 1164) = .294, p = .830. Overall, 

the results suggest fairly consistent relations between factors over developmental time.   



 

77 

 

 

Figure 2.3   Scatterplot of individual participants’ age and standardized composite score 

for each factor. Each column represents one year.  

 

2.5.2.3     Mediation Analyses: Numerical and EF Skills as 

                Mediators of the Space-Math Link  

Next, mediation analyses were carried out based on theory to suggest that numerical and 

EF skills potentially mediate the shared relations between spatial and mathematical 

processing. That is, the analyses reported above were further decomposed to test whether 

EF and numerical skills independently mediate the relation between spatial thinking and 

mathematics achievement. For example, to test the mediating role of numerical skills in 



 

78 

 

the space-math relationship, we removed the EF factor from the model presented in 

Figure 2.2; conversely, to test the mediating role of EF skills we removed the numerical 

factor from the model. Thus, mediation models were achieved by removing irrelevant 

pathways from the four-factor model and retaining only the pathways of specified 

interest. Note that the rationale and interpretation of each mediation analysis differed 

somewhat according to construct and question of interest (numerical vs EF). Numerical 

skills were targeted as a potential mediator for reasons that are best described by the 

causal steps approach to mediation (Judd & Kenny, 1981; Baron & Kenny, 1986), while 

EF skills were entered into the model for reasons that align with the confounding 

variables approach (e.g., see MacKinnon, Fairchild, & Fritz, 2007). While the causal 

steps approach involves testing a causal chain of events and typically assumes temporal 

precedence (e.g., spatial skills à numerical skills à mathematics achievement), the 

confounding variables approach – although a mathematically equivalent model – is used 

to test the influence of a potentially confounding or third variable in a given bi-variate 

relationship  (e.g., testing the extent to which EF skills might explain the space-math link; 

MacKinnon, Fairchild, & Fritz, 2007; also see Fiedler, Harris, Schott, 2018). 

As shown in Figure 2.4, numerical skills were found to partially mediate the 

relation between spatial skills and mathematics achievement, β = .182, SE = .04, p < .001, 

95% CI [.10, .27], 99% CI [-.07, .29]. The direct effect between spatial skills and 

mathematics remained robust, β = .697, SE = .08, p <.001, 95% CI [.55, .85], 99% CI 

[.50, .89]. Figure 2.5 shows the results of EF as a mediator between spatial ability and 

mathematics. As can be seen, EF failed to mediate these relations, β = .159, SE = .09, p = 

.064, 95% CI [-.01, .33], 99% CI [-.06, .38]. The direct effect between spatial skills and 

mathematics remained robust, β = .740, SE = .11, p <.001, 95% CI [.52, .96], 99% CI 

[.45, 1.03]3. In sum, numerical skills, but not EF, were found to partially mediate the 

relation between spatial ability and mathematics.  

                                                
3 As a follow-up, we also conducted an analysis in which we partialled out the effects of EF skills from 
both spatial and mathematics skills. (The mediation model is more akin to a partial correlation in which the 
influence of the mediator is partialled out from the outcome variable only). These results further confirmed 
strong relations between spatial and mathematics performance even after the influence of EF on both 
variables was taken into account. More specifically, spatial skills explained 81% of the variance in 
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Figure 2.4   Mediation model of numerical ability in the relation between spatial ability 

and overall matheamtics performance. *** p < .001. Values represent standardized 

coefficients.  

                                                                                                                                            

 
mathematics before taking EF into account and 62% of variance after EF was taken into account. Therefore, 
EF skills explained approximately 23% (i.e., 19/81) of the variance in the space-math link. In short, 
regardless of analytical approach, the space-math link does not appear to be explained by children’s EF 
skills. 
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Figure 2.5   Mediation model of EF in the relation between spatial ability and overall 

matheamtics performance. *** p < .001. n.s. = non-significant. Values represent 

standardized coefficients. 

 

2.5.2.4     Predictive Relations with Different Components of 

        Mathematics 

The final set of analyses examined the relations between the cognitive predictors and each 

mathematics outcome measure. That is, numeration and geometry were entered as single 

indicator outcome variables and two separate structural models were run. These analyses 

were carried out to determine how the various relations previously observed potentially 

vary as a function of the mathematics activity in question. Figure 2.6 shows a summary of 
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the results when numeration was used as a single outcome variable. Similar to the results 

of the full model, scores on the numerical and spatial factors were both uniquely related 

to numeration performance, β = .252, SE = .07, p = .001, 95% CI [.11, 40], 99% CI [.06, 

44] and, β = .342, SE = .07, p < .001, 95% CI [.21, .48], 99% CI [.16, 52] respectively. 

Scores on the EF factor were not statistically predictive of performance on the numeration 

test, β = .024, SE = .11, p = .821, 95% CI [-.18, .23], 99% CI [-.25, 30].  

Figure 2.7 shows the results when geometry was used as a single outcome 

variable. Scores on the spatial factor were strongly related to performance in geometry, β 

= .532, SE = .09, p < .001, 95% CI [.36, .71], 99% CI [.30, .77].  Scores on the 

numeration and EF factor did not predict performance on the geometry test, β = -.003, SE 

= .10, p = .979, 95% CI [-.19, .19], 99% CI [-.25, .25] and, β = .064, SE = .14, p = .648, 

95% CI [-.21, .34], 99% CI [-.29, .43].   

Taken together, both spatial and numerical skills predicted performance on the 

numeration test, but only spatial skills predicted performance on the geometry test. 

Executive functioning skills did not explain any unique variance on either measure.       

 

Figure 2.6 Cognitive predictors of numeration as a single test outcome measure. Values 

represent standardized coefficients. *** p = ≤ .001 
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Figure 2.7   Cognitive predictors of geometry as a single test outcome measure. Values 

represent standardized coefficients. *** p < .001  

 

2.6     Discussion       

The current study examined the cognitive foundations of early mathematics achievement 

in a sample of 4- to 11-year-olds. Analyses were first carried out to test the psychometric 

properties associated with a hypothesized four-factor model, with cognitive constructs 

related to numerical, spatial, and executive function skills and mathematics achievement. 

The four-factor model revealed robust correlations between each factor while also 

demonstrating good fit statistics; a finding that suggests that numerical, spatial, EF, and 

mathematics abilities are highly related but separable constructs. Importantly, the original 

four-factor model achieved better fit statistics than several alternative models, including a 

model in which a general (g) factor was used to link each individual predictor variable 

with mathematics achievement.  

  Given evidence of a four-factor model, our primary analyses aimed to more 

closely reveal the structure and underlying relations between numerical, spatial, EF, and 

mathematics skills. To this regard, we had several goals: (i) to examine the shared and 

unique contributions of children’s numerical, spatial, and EF skills to mathematics 
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achievement, (ii) to determine the relative stability of these relations across childhood, 

(iii) to test the potentially mediating roles of numerical and EF skills in the oft reported 

space-math link, and, lastly, (iv) to examine the extent to which relations between the 

predictor variables and mathematics vary as a function of the mathematics task in 

question (i.e., numeration vs. geometry).         

  Results revealed that children’s numerical, spatial, and EF skills collectively 

explained 84% of the variance in mathematics achievement, even after controlling for the 

effects of age. These results provide evidence of a fairly comprehensive model of 

children’s mathematics achievement. However, only the numerical and spatial factors 

were uniquely predictive of mathematics achievement. The observed relations between 

factors remained stable across age and grade, appearing to undergo highly parallel growth 

trajectories. Follow-up mediation analyses revealed that numerical skills, but not EF 

skills, partially mediated the relation between spatial skills and mathematics achievement. 

Our last set of analyses examined how the predictive utility of the model potentially 

varies as a function of the mathematics task being assessed, that is, numeration vs. 

geometry. Scores on the numerical and spatial factors were uniquely related to 

numeration performance, while only spatial ability was a unique predictor of geometry 

performance.  

In the following sections, we provide a more detailed review of the main findings 

just described. We begin by discussing the results of the CFA analysis and then review 

and offer interpretations of the findings related to the structural models employed. We 

focus much of our attention on the space-math link and more carefully consider the role 

of spatial visualization in children’s mathematics performance.  

2.6.1     Evidence of a Four-Factor Model      

We found evidence to suggest that numerical, spatial, EF, and more general mathematics 

skills are highly related but separable constructs. The correlations amongst these factors 

were strikingly high and similar in strength (rs .84 – .94) and indicate higher relations at 

the latent variable level than what would be predicted by examining the relations amongst 

the single indicator variables alone. This finding in itself demonstrates the potential utility 

of forming and testing the relations between latent variables, as they offer a more 
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comprehensive model of the targeted constructs; one not defined by a single measure – 

but rather a combination of measures – and less influenced by measurement error.  

Subsequent analyses revealed that the four-factor model achieved better fit 

statistics than a single-factor (g) model. While the four-factor model demonstrated good 

fit, the single-factor model straddled the boundary of what is considered acceptable fit 

statistics. Overall, our results suggest the need to be cautious in interpreting each factor as 

fully independent constructs. Instead, numerical, spatial, EF, and general mathematics 

achievement appear to strongly overlap with one another and yet are distinct enough to 

represent separable constructs. This result adds further support to the results of Mix et al. 

(2016), who found evidence of highly related but separable factors associated with spatial 

and mathematical domains in a large sample (N=854) of 5-to 13-year-olds. Moreover, 

these authors found evidence of strong cross-domain loadings for certain spatial and 

mathematical tasks, suggesting that a common cognitive network might underlie certain 

spatial and mathematical tasks. Notably, Mix et al. (2016) also presented evidence 

showing that spatial and mathematical tasks loaded on to a single factor in an orthogonal 

EFA model. Thus, our findings, like those reported by Mix et al. (2016), suggest a tight 

coupling of spatial and mathematical thinking.  The current findings suggest that 

numerical skills and EFs might also be implicated in this same cognitive network.  

Several follow-up analyses were carried out to further confirm evidence of a four-

factor model as well as to test specific theoretical distinctions in measurement. Of 

primary interest was whether measures of VSWM would more strongly load on the EF or 

spatial factor. Our results indicated better model fit when the VSWM measures were 

made to load on the EF factor. Moreover, the four-factor model fit the data better than a 

three-factor model in which the spatial and EF measures were made to load on the same 

construct. This suggest that spatial and EF skills – as measured in the current study – 

represent distinct constructs.  

Taken together, our results suggest that VSWM is better defined as a measure of 

EF than spatial ability. This finding has important implications as VSWM and spatial 

visualization skills appear to represent different constructs and, as further discussed 

below, share different relations with measures of mathematics achievement. Follow-up 

research is needed to further test the extent to which differences in constructs are 
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potentially due to the amount that the respective tasks emphasize the need to ‘recall’ 

visual-spatial information as opposed to self-generate and manipulate visual-spatial 

information. Do these differences in recall- versus generative-based tasks represent shared 

or distinct underlying cognitive mechanisms? Moreover, assuming VSWM and spatial 

visualization do represent distinct mechanisms, and our data suggest that they might, how 

do individual differences in these areas relate to mathematics achievement? Interestingly, 

while our data point to spatial visualization (i.e., generative spatial reasoning) as a more 

important contributor to mathematics achievement, it is possible that VSWM (i.e., recall-

based spatial reasoning) may play a more important role in mathematics tasks that 

emphasize fluency, such as the retrieval of arithmetic facts. Answering questions such as 

these will contribute to a more nuanced understanding of when and how spatial and 

mathematical thinking interact.      

In summary, the results of the CFA provided support for the hypothesized four-

factor model in which performance on numerical, spatial, EF, and mathematics tasks 

emerged as separate but highly related factors. Although we retained this model for all 

subsequent pathway analyses, some caution is warranted as our results also suggest strong 

cross-loadings between factors. Future research is need to replicate the current findings 

and to further test the extent to which each factor is indeed independent from the other. 

Furthermore, research is needed that seeks to better explain the underlying mechanisms 

that give rise to similarities and differences across constructs.   

2.6.2     Predictors of Mathematics Achievement 

Our results indicated that only the numerical and spatial factors explained unique variance 

in children’s mathematics achievement. Children’s scores on the EF factor failed to 

explain performance in mathematics once the other two factors and age were taken into 

account. Spatial ability was an especially strong predictor of children’s mathematics 

achievement.  

Given that the majority of the mathematics test items required the understanding 

and/or manipulation of symbolic mathematics (e.g., 34 = 30 + _ ), it is somewhat 

surprising that the spatial factor, and not the numerical factor, was the best predictor of 

mathematics achievement.  Critically, the relations between spatial ability and 
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mathematics could not be explained by the inclusion of matrix reasoning as an indicator 

of spatial ability. The same pattern of results was obtained when matrix reasoning was 

eliminated from, as well as controlled for, in the analyses. These findings provide support 

for specific relations between spatial visualization and mathematics. 

One explanation for this finding, and one not unique to our original hypothesis, 

has to do with the role of spatial visualization in mathematical problem solving. Indeed, it 

has been hypothesized that spatial visualization plays a critical role in how one mentally 

organizes, models, and ultimately makes sense of novel mathematical problems 

(Ackerman, 1988; Mix et al., 2016; Uttal & Cohen, 2012). Accordingly, the ‘spatial 

modelling hypothesis,’ as we have come to refer to it, predicts especially strong relations 

between spatial visualization and performance on novel mathematical tasks compared to 

highly familiar tasks. For example, spatial visualization would be expected to play a more 

important role when one is first learning arithmetic compared to when one has mastered 

their arithmetic facts. Interestingly, recent findings of Mix et al., (2016) provide support 

for the spatial modelling hypothesis, in which it was found that spatial skills were more 

related to novel mathematics problems than familiar ones. In the current study, the 

mathematics tests predominantly featured applied problems, lending further support for 

the role of spatial visualization in solving novel problems. This hypothesis dovetails 

nicely with the metaphor of spatial visualization as a cognitive tool used to construct 

spatial-numerical/mathematical relations.  

Interestingly, our findings also provide evidence of relations between basic 

numerical skills and spatial visualization (for similar findings see Thompson, Nuerk, 

Moeller, & Cohen Kadosh, 2013; Viarouge, Hubbard, & McCandliss, 2014). More 

specifically, our results indicate considerable overlap at the latent variable level (r=.84) as 

well as evidence that basic numerical skills partially mediate relations between spatial 

visualization and overall mathematics achievement. These results suggest that spatial 

visualization might also be involved in processing familiar and well-learned mathematical 

content, such as making rapid judgments about numerical symbols. Thus, our results 

implicate spatial visualization in numerical tasks that are solved both quickly and with 

seemingly little effort as well as tasks that require deliberate and effortful reasoning.  
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Although these results appear to run counter to the spatial modeling hypothesis 

(i.e., spatial visualization plays a greater role in novel mathematics), one possibility is that 

the association between basic number skills and spatial visualization is an artefact of 

numerical-spatial relations formed earlier in development. Spatial visualization may play 

an important role in early number learning as children actively construct spatial-

numerical associations. Eventually, over development, these early conceptual groundings 

become increasingly more automatic and give rise to procedural fluency. Findings from 

our mediational analysis offer preliminary – albeit far from causal – support for this 

possibility and suggest that spatial visualization skills may facilitate numerical 

development. However, the relation between spatial visualization and mathematics 

achievement appears to be much stronger than the one shared between spatial 

visualization and basic numerical skills. Thus, the relation between spatial visualization 

and numerical skills cannot explain the robust relationship between spatial visualization 

and mathematics achievement more broadly and lends support to the spatial modelling 

hypothesis. This suggest that although numbers and spatial processes are linked at a 

relatively basic level, the association is even stronger at higher levels of numerical and 

mathematical processing. 

 Taken together, our findings suggest that spatial visualization skills play an 

important role in both basic numerical skills as well as more advanced numerical and 

mathematical reasoning. However, there appears to be an asymmetry in these relations, as 

spatial visualization was found to be more strongly related to novel or much less practiced 

mathematical tasks compared to tasks assessing numerical fluency. Future research efforts 

are needed to further disentangle when, why, and how spatial visualization is implicated 

in both basic and advanced mathematical reasoning.   

 

2.6.3     Effects of Age and Grade on Observed Relations 

Our findings suggest that the relations between numerical, spatial, and EF skills, and 

mathematical achievement develop in parallel and maintain relatively stable relations 

during early childhood (4-to-10 years of age). On the one hand, these findings are to be 

expected based on prior research showing strong and consistent relations between these 
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variables in isolated studies of both children and adults (e.g., see Miyake et al., 2001; Mix 

& Cheng, 2012). On the other hand, these findings run counter to the idea that certain 

cognitive skills, such as spatial visualization, share stronger relations during initial 

learning of academic content, such as symbolic number, as compared to when the content 

has become more procedural and automatic (e.g., see Holmes & Adams, 2006; 

Huttenlocher, Jordan, & Levine, 1994; Mix et al., 2016; Rasmussen & Bisanz, 2005). For 

example, prior research has demonstrated that the learning of new mathematical content 

relies more on VSWM and less on verbal working memory (Rasmussen & Bisanz, 2005). 

However, with learning and development, the role of verbal working memory becomes 

increasingly more important for representing the learned material and the role of VSWM 

appears to become less important (Huttenlocher, Jordan, & Levine, 1994; Rasmussen & 

Bisanz, 2005). Indeed, this ‘spatial’ to ‘verbal’ shift is thought to correspond to changes in 

how the content is conceptualized; that is, as information that is initially grounded and 

understood in terms of concrete, spatial, and embodied experiences, but over time and 

experience, becomes increasingly more abstract and verbal in its representation (Bruner, 

1966; Lakoff & Núñez, 2000). Notably, this shift also corresponds to a decrease in the 

need to exhibit effortful top-down executive control, suggesting that the role of EFs is 

dampened with mastery of content in a given area. Paradoxically, when one is confronted 

with the learning of new mathematics material, the role of EFs, most notably inhibitory 

control, is needed to inhibit prior learning experiences (e.g., overcoming the ‘whole 

number bias’ when introduced to fractions; 2/3 > 4/7; Gómez, Jiménez, Bobadilla, Reyes, 

& Dartnell, 2015).  

 Taken together, the research above helps to shed light on why we may have 

observed consistent relations between spatial ability, EF skills, and mathematics 

achievement across such a wide age range of children. So long as the mathematics tasks 

are adaptive and requires the use of spatial skills and EFs to make sense of new or rarely 

encountered problems, relatively stable correlations between constructs are predicted to 

emerge. According to this view, successful performance on novel or difficult 

mathematical problems requires both independent and integrated contributions from both 

spatial and EF skills. Interestingly, our data offer only partial support for this hypothesis 

as only spatial skills were found to uniquely predict mathematics performance. Future 
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research efforts are needed to further investigate this hypothesis using a different suite of 

EF measures. It is possible that the EF measures enlisted in the current study were too 

closely related to the spatial ability measures and any remaining variance was simply not 

enough to detect individual contributions of EF skills to mathematics achievement.  

  Based on the hypothesis stated above, we should expect to see tighter relations 

between spatial, EF, and numerical skills earlier in development and a gradual divergence 

of relations between spatial and EF skills and their relations with basic numerical skills 

over development. As symbolic number skills become more automatic the roles of higher 

cognitive skills should be minimized. However, this does not mean that the correlations 

between these various skills should necessarily become minimized. On the contrary, and 

to use the relation between EFs and mathematics as an example, if a child enters the 

learning of new mathematics material with strong EF skills, he/she should be able to 

harness these skills to better learn the new task(s). There is little reason to suspect that the 

relations would weaken over time, despite fundamental changes in the recruitment and 

reliance on EFs as the learner progresses from novice to ‘expert.’ This same explanation 

might underlie the relative stable relations in the current study between spatial 

visualization and basic numerical skills as well as more sophisticated mathematics tasks.  

 Longitudinal research is needed to further test the stability of the factors at the 

individual level. This approach will provide further insight into the relative stability and 

change that occurs in performance over development. For example, is it the case that 

children who start low on any given factor are likely to remain low throughout 

development? Moreover, how are improvements on any one factor associated with 

improvements across the other factors, perhaps most notably, mathematics achievement? 

In short, longitudinal research provides a means to better understand directional relations 

between the various factors. This information, in turn, has implications for educational 

design and intervention.   

  

2.6.4     Mediating Roles of EFs and Numerical Skills 

Our results indicated that basic numerical skills, but not EFs, partially mediated the 

relation between spatial visualization and mathematics achievement. As noted above, the 
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finding that numerical skills mediated the relation is in line with prior theoretical and 

empirical support that spatial skills facilitate numerical development (e.g., see Gunderson 

et al., 2012; Tam, Wong, & Chan, 2018).  

Our failure to reveal a mediating role of EF skills in the space-math link is a novel 

and surprising finding. Recall that the decision to test EF as a mediator in the relation 

between space and maths was based on the proposal that EF skills may be driving the 

space-math link due to the shared recruitment and reliance on top-down effortful control 

mechanisms. However, our findings indicate that although the two constructs were highly 

related, they were found to differentially relate to mathematics achievement. Spatial 

visualization appears to share a more direct link to our measures of mathematics than 

children’s EF skills. This finding supports the longitudinal findings of Verdine et al. 

(2014), who found that children’s spatial skills at the age of three uniquely predicted 

children’s mathematics performance one year later, explaining an additional 27% of the 

variance over and above children’s EF skills.  

However, it also worth considering an alternative explanation for why EF skills 

were not uniquely related to mathematics achievement and similarly failed to mediate the 

space-math link. Rather than assuming that spatial visualization and EFs represent distinct 

constructs, as we have done, it is possible that the spatial measures enlisted may in fact 

better represent indicators of EF than the measures enlisted to represent EF. Our attempt 

to separate spatial ability from EFs based on distinctions, in part, between the need to 

‘generate’ versus ‘recall’ information may have resulted in a misrepresentation of EF. For 

example, it could be argued that the best measures of EF used in the current study were 

those used to measure spatial visualization, as these measures required a greater degree of 

manipulation of information in the service of a task. Future studies are needed to further 

investigate this possibility. It is possible that EF tasks that require greater amounts of 

planning and manipulation, as opposed to more recall-based tasks, would potentially 

result in stronger relations with both spatial visualization tasks but also mathematics 

achievement. In order to further test our claims made about the ‘spatial modeling 

hypothesis’ this is a critical next step: Is it the ability to generate and model visual-spatial 

solutions to problems that is most important to mathematical problem solving? Or is it a 

more general ability to generate solutions to problems, including verbally mediated 
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processes, that matters most? As it stands, our data suggest that mathematics performance 

is best explained by an underlying construct related to the ability to generate and reason 

about visual-spatial images compared to a construct related to visual-spatial recall and 

inhibitory control. 

 

2.6.5     Predicting Numeration vs. Geometry Performance 

As just alluded to, mathematics is not a unitary construct but rather a varied and complex 

one. For this reason, it has been suggested that any attempt to predict mathematical 

behaviour should first consider the task requirements of the particular mathematics in 

question (see Mix & Cheng, 2012). In the present study, we used separate tests of 

numeration and geometry as examples of outcome measures that were expected to call 

upon different cognitive resources. More specifically, we predicted that numeration would 

best be predicted by basic number skills and geometry would best be predicted by spatial 

ability. These predictions were only partially supported. Although basic numerical skills 

did predict performance on the numeration test, spatial ability was found to be an even 

stronger predictor. Only spatial ability was a unique predictor of geometry. 

 Why might spatial ability better explain performance in both these areas of 

mathematics? One possibility is that basic numerical skills are necessary but not sufficient 

in order to perform well on both tests of mathematics. To do well requires not only a 

familiarity and fluency with numbers, but perhaps more importantly, knowledge and 

skills in the use and application of numbers within broader mathematical contexts. As 

hypothesized above, spatial visualization skills might serve as an important cognitive tool 

in this regard. To further illustrate this point, we return to the building metaphor in which 

numbers might be seen as the building blocks and spatial visualization as a tool used to 

manipulate and assemble the building blocks. Our findings suggest that key differences in 

mathematics performance are explained by both one’s fluency with basic numerical skills 

but also – and perhaps to a greater extent – one’s ability to operate on, use, and apply 

numbers within and across various mathematical problems. Ultimately, mathematics 

performance likely rests on one’s ability to coordinate multiple representations and uses 

of number and various other mathematical symbols. Future research efforts are needed to 
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better understand how different cognitive skills not only differentially relate to different 

branches of mathematics but also potentially different numerical and mathematical 

concepts, procedures, and facts within each branch. 

2.6.6     Limitations 

There are several limitations worth pointing out. First, this study was carried out in low 

SES populations, living in mostly rural areas. For this reason, one must be careful not to 

generalize the current findings to the general population. It is possible that children of 

lower SES backgrounds may rely more heavily on informal approaches to mathematics 

problem solving compared to their higher SES peers who may rely more heavily on 

formal learning experiences (e.g., see Jordan, Huttenlocher, & Levine,1994). Accordingly, 

children in higher SES populations may rely less on spatial visualization skills and more 

on symbolic numerical skills (e.g., see Butterworth, Reeve, & Reynolds, 2011). However, 

recent evidence challenges this prediction. Reeve and colleagues (2018) demonstrated 

that the predictors of arithmetic in indigenous and nonindigenous children in rural and 

urban Australia were highly comparable and driven by similar visual-spatial factors. This 

finding highlights the importance of visual-spatial abilities for early numerical cognition 

regardless of SES and cultural divides. Given the mixed results to date, future work of 

this sort should strive to use a more economically diverse sample and seek to better 

understand the potentially moderating effects of SES on the observed relations.  

Second, another concern with the current study has to do with the issue of 

common method variance (Kline, 2015); when variables are measured in highly similar 

ways. One reason we may have found separate factors for each construct might be 

partially explained by the common measurement approaches used to test each construct. 

For example, the numerical measures were all timed tests and involved highly similar task 

demands (e.g., crossing out the correct response). The spatial and mathematical tasks 

were all untimed and involved pointing to the correct response. Consequently, the spatial 

and mathematics measures may have been more closely related because individuals who 

were careful, took their time, and double-checked their work in the spatial measures may 

have also been more likely to do so in the mathematics measures. Issues of common 
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measurement variance should be carefully considered in any future efforts to replicate the 

current findings.   

 Third, our results should be interpreted with acknowledging that all four 

constructs were highly correlated. Although a four-factor model was found to best fit the 

data, other models also fit the data to a satisfactory degree as well. So, although we can be 

confident that in combination, numerical, spatial, and EF skills provide a robust model of 

mathematics achievement, we are less confident of the more specific relations observed. 

The current model of mathematics, including the individual pathways, needs to be 

replicated.  

 Finally, our data were cross-sectional and limit any conclusions we can make 

about the directionality of the mediation analyses. Future research is needed to test 

longitudinal relations between numerical, spatial, and EF skills and their relations with 

mathematics achievement. Given their high correlations with one another, it seems 

germane to study the extent to which these variables interact with one another over time 

and potentially develop in part due to synergistic effects of one domain on the other. Said 

differently, does growth or improvement in one domain predict growth in the other 

domains? Intervention studies that target each construction in isolation but also in 

combination with one another will be critical in order to arrive at a better understanding 

of causal pathways between variables. Moreover, these efforts have the potential to 

eventually inform educational practice.  

2.6.7     Conclusion 

Results of a CFA demonstrated that numerical, spatial, EF, and mathematics skills are 

highly related, yet separable, constructs. Follow-up structural analyses revealed that 

numerical, spatial, and EF latent variables explained 84% of children’s mathematics 

achievement scores, even after controlling for age. These results further highlight the 

potential importance of numerical, spatial, and EF skills in the learning and performance 

of foundational mathematics competencies, such as numeration and geometry. Further 

analyses revealed spatial reasoning as a particularly strong contributor to mathematics 

achievement. It is hypothesized that this relation rests on the critical role that spatial 

visualization plays in forming the problem and potential solutions to novel mathematics 



 

94 

 

tasks. This study contributes to the growing need to further understand the dynamic 

interplay of basic cognitive skills and performance in various branches of mathematics.  
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Chapter 3  

3 Neural Underpinnings of Numerical and Spatial 

Cognition: An fMRI Meta-Analysis of Brain Regions 

Associated with Symbolic Number, Arithmetic, and 

Mental Rotation 

3.1 Citation 

With the exception of formatting changes, this chapter has been published in its current 

form and is cited as followed:    

 

Hawes, Z., Sokolowski, H. M., Ononye, C. B., & Ansari, D. (2019). Neural 

Underpinnings of Numerical and Spatial Cognition: An fMRI Meta-Analysis of Brain 

Regions Associated with Symbolic Number, Arithmetic, and Mental 

Rotation. Neuroscience & Biobehavioral Reviews, 103, 316-336. 

3.2 Introduction 

Mathematics is frequently conceived of and expressed in terms of spatial relations. 

Historically, many mathematical discoveries have made use of the human capacity to 

think and reason about space (Davis et al., 2015; Dehaene, 2011; Hubbard, Piazza, Pinel, 

& Dehaene, 2005). For example, famous mathematical discoveries, such as Pythagoras’s 

Theorem, the Real Number Line, Cavalieri’s principle, and the Cartesian coordinate 

system all speak to the intricate and intimate connections between space and 

mathematics. Moreover, ancient tools such as the abacus and knotted arithmetic rope, and 

more recently the number line, are but a few examples of cultural inventions that directly 

map numbers and their relations onto space.  

Critically, the link between numbers and space is not limited to inherently spatial 

aspects of mathematics, such as geometry and measurement, but appears to extend down 

to the most fundamental of mathematical entities and operations: numbers and arithmetic. 
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Although there is extensive behavioral evidence for strong relations between spatial and 

numerical thinking (e.g., see Mix & Cheng, 2012; Hawes, Moss, Caswell, Seo, & Ansari, 

2019), questions remain regarding the underlying neural relations between these two 

cognitive constructs. To date, research on the neural correlates of spatial skills, such as 

mental rotation, and numerical reasoning have been studied in complete isolation from 

one another (e.g., see Zacks, 2008). While it has been well established that basic spatial 

processes (e.g., comparing line lengths) are related to basic numerical processes (e.g., 

comparing Arabic digits; e.g., see Sokolowki, Fias, Mousa, & Ansari, 2017), it is not yet 

known whether higher-level spatial skills (e.g., mental rotation) relate to numerical and 

mathematical processing in the brain. Thus far, investigations into the neural correlates of 

spatial and numerical processes has been limited to studies examining Spatial-Numerical 

Associations (SNAs; e.g., see Toomarian and Hubbard, 2018). This body of research is 

based largely on experimental paradigms that do not require intentional and effortful 

spatial processing, such as mental rotation. Instead, this body of research is interested in 

uncovering the unconscious links between space and number. Crucially, in this paper, we 

aim to do the opposite. We address the conscious and intentional processing of numbers, 

space, and the operations that link them.  

The decision to focus on high-level spatial skills (of which mental rotation is but 

one of many), rather than lower-level spatial skills, was informed by the literature on 

individual differences. While consistent and robust relations exist between spatial 

visualization abilities4, including mental rotation skills, and numerical and arithmetical 

reasoning, relations between low-level spatial and numerical processing (e.g., automatic 

SNAs) has failed to reveal reliable associations with higher level mathematics, including 

arithmetic (Cipora, Patro, & Nuerk, 2015; Hawes et al., 2019; Mix & Cheng, 2012). Thus, 

                                                
4 Note that mental rotation is but one example of what we refer to more generally as spatial visualization, 
which is defined here as the ability to generate, maintain, and transform visual-spatial images in mind 
(Lohman, 1996). In addition to mental rotation, other measures of spatial visualization include mental paper 
folding, composition/decomposition of 2D/3D shapes, and block design (Carroll, 1993; Hawes et al., 2019; 
Hegarty & Waller, 2005). We targeted mental rotation as our construct of interest to constrain our search 
criteria, but also because it is a well-established measure of spatial ability, has been found to correlate 
strongly with a variety of mathematical tasks, and has been subject to numerous fMRI investigations (Mix 
& Cheng, 2012; Zacks, 2008). 
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by revealing the neural relations between mental rotation and numerical and arithmetical 

reasoning, we may be afforded new insights into the relations between high-level spatial 

skills (mental rotation) with both basic and more advanced numerical reasoning processes 

(i.e., basic symbolic number processes and arithmetic, respectively). To summarize, we 

have a good understanding of where, and to a lesser extent, how low-level spatial and 

numerical processes are associated in the brain (Dehaene, Piazza, Pinel, & Cohen, 2003; 

Sokolowski et al., 2017; Sokolowski, Fias, Ononye, & Ansari, 2017). We do not, 

however, have a good understanding of where or how spatial visualization abilities are 

related to numerical and arithmetical processes in the brain.  

 To address this gap in the literature, we report the results of a meta-analysis of 

brain regions associated with neural activity in three key aspects of mathematical 

thinking: basic symbolic number processing, mental arithmetic, and mental rotation (a 

widely used measure of spatial ability). We targeted these three cognitive processes 

because they provided opportunities to test theoretically informed predictions as to when, 

why, and where we should expect to see common and distinct neural activity. As outlined 

in Figure 3.1 – and described in detail in the following literature review – these three 

cognitive processes are hypothesized to be related to the extent that task performance 

involves common and distinct operations. For example, common to mental arithmetic and 

symbolic number, but not mental rotation, is the need for symbolic number processing. 

Accordingly, we hypothesized that we should see overlap in brain regions that are 

associated with symbolic number processing, shared by both arithmetic and symbolic 

number processes, but not mental rotation. Using this same logic, we should expect to see 

overlap between mental rotation and mental arithmetic, but not symbolic number, in 

regions that are more closely associated with mental manipulation. While mental 

arithmetic and mental rotation involve domain-general mental manipulation, symbolic 

number processing presumably does not (or at least to a much lesser degree)5. Lastly, we 

                                                

5 We acknowledge that not all types of arithmetic require mental manipulation (e.g., memorized arithmetic 
facts). However, as revealed in the Methods section, many of the fMRI studies on mental arithmetic were 
explicitly designed to elicit effortful calculation and mental manipulation processes. We deliberately made 
no distinction between low-effort (recall-based) vs. high-effort (calculation-based) problems in creating our 
mental arithmetic ALE map. As discussed later, this decision was based on our intent to reveal brain 
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should expect to see overlap between all three processes based on the common need to 

represent and reason about magnitudes (e.g., see Walsh, 2003). Additionally, we 

hypothesize that these processes may also be linked through the role that spatial 

visualization (measured here with mental rotation) plays in mapping numbers onto space. 

By examining the representation versus manipulation of numerical information and the 

associated overlap with mental rotation, we aimed to better pinpoint the specific 

relationships between spatial and numerical processing. Taken together, the goals of this 

study were 1) to provide a meta-analysis of brain regions associated with three key 

aspects of mathematical thinking, and 2) provide a more nuanced and theoretically driven 

approach to understanding when and why spatial and numerical thinking may or may not 

recruit common neural mechanisms. 

                                                                                                                                            

 
regions associated with both basic symbol processing but also higher-level spatial reasoning (i.e., mental 
rotation). Note that domain-general manipulation refers to the manipulation of unspecified and amodal 
stimuli and forms of information (e.g., cube structures or numbers; verbally or visually coded information).  
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Figure 3.1   Process-based account of common and distinct operations associated with 

symbolic number, mental arithmetic, and mental rotation. 

 

3.2.1 Behavioral Evidence of Connections between Spatial 

and Numerical Cognition   

The scientific study of relations between numbers and space has a lengthy history, 

beginning with studies by Sir Francis Galton in the late 1800’s and continuing to the 

present day (Galton, 1980; Toomarian & Hubbard, 2018). The majority of research in this 

area posits the ‘mental number line’ as the source of various empirical accounts of 

‘numerical-spatial associations.’ According to this theory, humans conceptualize numbers 

and their various relations along a mental number line in which numbers are ordered in 

ascending magnitude from left-to-right. Empirical support for the theory comes from a 

number of behavioral findings, including the SNARC effect, (spatial-numerical 
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association of response codes; Dehaene, Bossini, & Giraux, 1993), line bisection effects 

(Calabria & Rossetti, 2005), and the operation momentum effect (Knops, Viarouge, & 

Dehaene, 2009). In brief, the SNARC effect refers to the automatic association of small 

numbers (e.g., 1, 2, 3) to the left side of space and larger numbers (e.g., 7, 8, 9) to the 

right side of space. For example, people are faster to make parity judgments (i.e., 

determine whether or not a number is even or odd) when the left hand is used to make 

judgments about small numbers and the right hand is used to make judgments about 

larger numbers. This effect is said to be automatic because the task itself does not actually 

involve intentional judgments about the magnitude of the numbers. The line bisection 

effect is much less studied than the SNARC effect but similarly demonstrates automatic 

biases of associating small numbers with the left side of space and large numbers to the 

right side of space. For example, in one version of the line bisection task, individuals are 

asked to use a pencil to mark the midpoint of a string of numerals of small single-digit 

numerals (e.g., 2222222) compared large single-digit numerals (e.g., 9999999). Results of 

these studies indicate that adult participants bias their estimates to the left when bisecting 

small single-digit numerals and bias their estimates to the right when bisecting large 

single-digit numbers (Calabria & Rossetti, 2005). Finally, operation momentum effects 

refer to the oft-reported finding that left-right response biases are associated with addition 

and subtraction, and even the operators themselves (i.e., + and -). For example, 

individuals tend to overestimate answers to addition problems and underestimate answers 

to subtraction problems (McCrink, Dehaene, & Dehaene-Lambertz, 2007). Importantly, 

these associations appear to be culturally mediated and indicate the roles of learning, 

development, and cultural influences (left-to-right written notation) in forming these 

spatial-numerical associations. For example, the SNARC effect is reversed in cultures that 

read from right-to-left (Shaki, Fischer, & Petrusic, 2009). Taken together, a large body of 

research supports the presence of spatial-numerical associations and the tendency to map 

numbers and their various relations to space.  
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3.2.1.1 Contributions of Spatial Skills in Mapping Numbers 

to Space 

What are the cognitive bases for the ability to map numbers and mathematical objects 

onto space? Recent research suggests that spatial abilities play a key role in this process. 

For example, individual differences in the ability to map numbers to space (e.g., 

estimating where a number belongs on an empty number line) has been found to mediate 

relations between spatial ability and mathematics performance (Gunderson, Ramirez, 

Beilock, & Levine, 2012; Tam, Wong, & Chan, 2019). One explanation for these findings 

is that stronger spatial abilities, such as being able to mentally rotate objects and visualize 

various visual-spatial relations, underlies a greater ease and fluency in which one can 

move up and down and carryout various operations along the ‘mental number line’ 

(Viarouge, Hubbard, & McCandliss, 2014). Thus, spatial ability represents one potential 

cognitive mechanism that underlies numerical-spatial mappings.   

  Critically, the mapping of numbers to space might represent but one instantiation 

of the role spatial skills plays in conceptualizing mathematical relations. Individual 

differences in spatial skills, such as mental rotation, have been linked to performance 

across a variety of mathematical tasks, including geometry (Delgado & Prieto, 2004), 

algebra (Tolar, Lederberg, & Fletcher, 2009), word problems (Hegarty & Kozhevnikov, 

1999), mental arithmetic (Kyttälä & Lehto, 2008), and advanced mathematics (e.g., 

function theory, mathematical logic, computational mathematics; Wei, Yuan, Chen, & 

Zhou, 2012). According to a recent review, “the connection between space and math may 

be one of the most robust and well-established findings in cognitive psychology” (Mix & 

Cheng, 2012, p. 198). Taken together, an emerging body of research suggests that spatial 

skills, such as mental rotation, may play an important role in forming spatial-numerical 

associations, specifically, and spatial-mathematical associations, more generally 

(Marghetis, Núñez & Bergen, 2014; Hubbard, Piazza, Pinel, & Dehaene, 2009).    

3.2.2 Neural Evidence for Links between Spatial and 

      Numerical Cognition  
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3.2.2.1 Neuropsychological Studies and the Role of the Left 

Angular Gyrus  

Given the close coupling of number and space in behavioral studies, might we also see a 

close coupling of underlying neural mechanisms? Evidence to date suggests that this 

indeed may be the case. Some of the earliest studies that indicate that there is a link 

between numerical and spatial processing at the neural level came from 

neuropsychological case studies. It has long been recognized that lesions to the parietal 

lobe result in joint impairments in numerical and spatial processing (Gerstmann, 1940; 

Holmes, 1918; Stengel, 1944). For example, Gerstmann’s Syndrome, a rare condition 

associated with lesions to the left angular gyrus, is marked by deficits in numerical and 

spatial thinking and more specifically by a tetrad of symptoms that include deficits in 

carrying out basic calculations, left-right confusion, finger agnosia (trouble identifying 

one’s fingers), and dysgraphia (difficulty with writing) (Gerstmann, 1940). There is some 

evidence to suggest that the core deficit associated with Gerstmann’s Syndrome is due to 

difficulties in the mental manipulation of images, including impaired mental rotation 

skills (Mayer et al., 1999). These case studies suggest a potential interaction of number 

and space in the left angular gyrus. Recent support for this possibility has been 

demonstrated across several studies using transcranial magnetic stimulation (TMS); a 

methodology used to temporarily induce ‘lesion-like’ effects through altering electrical 

current in targeted areas of the brain. Studies have shown that disruptions to the left 

angular gyrus appear to impair one’s spatial representation of number, also referred to as 

the ‘mental number line’ (Cattaneo, Silvanto, Pascual-Leone, & Battelli, 2009; Göbel, 

Calabria, Farne, & Rossetti, 2006; Göbel, Walsh, & Rushworth, 2001).  

 Another line of neuropsychological research that supports the interaction of space 

and number in the parietal lobes comes from studies on patients with hemi-spatial 

neglect; a condition marked by the inability to attend to the contralesional portion of 

space (e.g., ignoring left side of space when the lesion is in the right parietal lobe). This 

results in a skewed ability to indicate the mid-point of both imagined and actual objects, 

including the mid-point of a physical line, but also the mid-point of numerical intervals 

(Bisiach & Luzatti, 1978; Zorzi et al., 2002). For example, Zorzi and colleagues (2002) 
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found evidence to suggest that right-lateralized neglect patients tended to overestimate the 

mid-points of two spoken numbers, such as “two” and “six”; that is, rather than state that 

“four” falls in between “two” and “six,” patients were more likely to bias their estimates 

to the right and erroneously state “five” as the mid-point.  

 In sum, lesion studies as well as temporarily altered brain activity via TMS, 

suggests that the parietal lobe and specifically the left angular gyrus subserve both 

numerical and spatial processing. However, more recent research findings challenge these 

claims. For example, accumulating evidence suggests that the left angular gyrus may be 

the source of verbally stored symbolic number understanding and associated number 

facts, including arithmetic facts (Polspoel, Peters, Vandermosten, & De Smedt, 2017). 

This shift away from the left angular gyrus as a neural region associated with both 

numerical and spatial processes is perhaps best represented in Dehaene et al.’s (1992; 

2003) ‘Triple Code Model’ of numerical cognition. This model posits that the left angular 

gyrus is specific to verbally mediated symbolic number processes and the bilateral 

intraparietal sulci (IPS) supports the processing of abstract numerical magnitudes, 

including the spatial and semantic representation and manipulation of numbers (Dehaene 

& Cohen, 1997; Dehaene et al., 2003). A recent fMRI meta-analysis further suggests that 

the left angular gyrus might play a role in verbally mediated symbolic number knowledge 

(Sokolowki, Fias, Mousa, & Ansari, 2017). More specifically, while both symbolic and 

non-symbolic numbers (e.g., dot arrays) were processed by shared frontal and parietal 

regions, only symbolic number uniquely activated the left angular gyrus. Additionally, a 

meta-analysis of functional brain activity related to mental rotation failed to reveal 

regions specific to the left angular gyrus and instead pointed to activity in bilateral frontal 

and parietal regions (Zacks, 2008).  

 Taken together, while there is some evidence that the left angular gyrus might be 

implicated in both numerical and spatial processing, there is a growing body of evidence 

to suggest that the left angular gyrus is more specifically related to verbally mediated 

numerical knowledge. By directly contrasting brain regions associated with activity in 

basic symbolic number processing, arithmetic, and mental rotation, we aim to further 

shed light on the specificity of this region as one potentially more attuned to numerical 

and/or spatial processing. Furthermore, by contrasting regions specific to basic symbolic 
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number processes and more complex symbolic number processes, i.e., arithmetic, we may 

be able to offer additional insight into whether this region is more active for basic vs. 

higher-level numerical tasks.  

3.2.2.2 fMRI Studies and the Role of the Intraparietal 

Sulcus 

The intraparietal sulcus (IPS) has been targeted as a central region of interest to 

researchers of numerical and spatial cognition alike. However, the conclusions and claims 

about the importance of the IPS for numerical and spatial cognition differ according to 

each field. Research on numerical cognition has described the IPS as the locus of the 

putative “number module,” “core quantity system,” and the “number-essential” region 

(Butterworth, 1999; Dehaene et al., 2003). Research on spatial cognition has described 

the IPS as a region underlying visual-spatial transformations (Jordan, Heinze, Lutz, 

Kanowski, & Jäncke, 2001; Zacks, 2008). Presumably, these differences are because 

studies on the role of the IPS for numerical and spatial processes have been carried out in 

isolation from one another. Moreover, this lack of ‘cross-talk’ between fields may 

underlie differences in the ways in which domain-specific functions are ascribed to the 

IPS. These differences are especially apparent within the domain of numerical cognition.  

 For over two decades, the IPS has been theorized to house domain-specific 

processes related to number. Indeed, there is a large body of evidence showing that the 

IPS – the horizontal segment of the IPS in particular – is consistently activated during 

both symbolic (“3” or “three”) and non-symbolic ( ) number tasks. The fact that the 

meaning of number is processed and retained across formats (e.g., hearing the number 

“three” and seeing three objects) has been taken as evidence that the IPS represents 

number in the abstract. According to Dehaene’s influential ‘Triple Code Model,’ the IPS 

plays a critical role in the semantic manipulation of numbers and is the most plausible 

candidate for domain-specificity.  

Critically, other perspectives on the role of the IPS in number processing espouse 

far less ‘domain-specific’ views. Instead, the IPS may represent an area that underlies a 

far more general magnitude system; one that is sensitive to a variety of magnitudes, 
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including space, luminance, and even time (e.g., see Kadosh, Lammertyn, & Izard, 2008; 

Sokolowski et al., 2017). For example, the IPS and other parietal regions are similarly 

activated when participants make number comparisons but also when comparing various 

line lengths (Pinel, Piazza, Le Bihan, & Dehaene, 2004). There is strong evidence that 

basic spatial properties of objects are processed in the parietal cortex, including the IPS. 

In fact, a central challenge in the attempt to isolate number-specific regions of cortex is 

controlling for confounds related to basic spatial properties of objects. As is the case in 

natural world, continuous quantity and numerosity appear to be highly correlated in the 

brain (Newcombe, Levine, & Mix, 2015; Walsh, 2003). The most influential model in this 

regard is Vincent Walsh’s (2003), ‘A Theory of Magnitude’, aka, ATOM. Walsh posits 

evolutionary reasons for  widespread overlap for between the magnitudes of time, space, 

and quantity. 

 Given that the processing of basic spatial properties, such as size and shape, have 

been implicated in a general magnitude system, might higher-level spatial skills, such as 

mental rotation, also recruit some of the same neural resources? Although the neural 

foundations of mental rotation have been studied in isolation from studies of numerical 

reasoning, a review of the literature suggests highly overlapping areas of activation in the 

parietal lobes, including the IPS. In fact, a meta-analysis by Zacks (2008) demonstrated 

that the IPS was the most consistent and robust brain region associated with mental 

rotation performance. This finding has led to speculation that this brain region is 

responsible for visual-spatial transformations, including mental rotation but other visual-

spatial transformations as well, such as geometric translations (Jordan, Heinze, Lutz, 

Kanowski, & Jäncke, 2001; Seydell-Greenwald, Ferrara, Chambers, Newport, & Landau, 

2017; Zacks, 2008). According to this view, the IPS is representative of a more general 

network that is involved in a variety of visual-spatial transformations.  

 Taken together, current evidence suggests that the IPS and closely surrounding 

parietal regions play a foundational role in numerical and spatial processes. However, the 

functions ascribed to the IPS vary and represent a range of possibilities, including 

number-specific processes, more general magnitude processes, and visual-spatial 

transformations. One of the aims of this study is examine the common and distinct 

regions in and around the IPS as they relate to numerical and spatial processes. If it is 
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found that a high degree of overlap exists between symbolic number processing, 

arithmetic, and mental rotation, there may be reason to revisit current theories related to 

the functions of the IPS. The presence of distinct regions associated with each task might 

further provide guidance for future studies, as these regions might be particularly suited to 

specific processes related to each task. 

 

3.2.2.3 Mathematical Cognition and the General Role of 

      the Fronto-Parietal Network 
 

In addition to the parietal lobes, the frontal lobes are also consistently active during 

numerical, mathematical, and visual-spatial reasoning tasks (Desco et al., 2011; Matejko 

& Ansari, 2015; O’Boyle et al., 2005). However, in comparison to the parietal lobes, the 

frontal cortex has received less attention as a region of targeted interest. This may be due 

in part to more general functions ascribed to the frontal regions compared to the parietal 

lobes. It is well-recognized that the prefrontal cortex is commonly associated with top-

down attentional and executive control processes (Fincham et al., 2002; Owen, McMillan, 

Laird, R., & Bullmore, 2005; Smith & Jonides, 1999). Thus, task-related activity in 

frontal regions is often taken as evidence of increased top-down control requirements. For 

example, increases in task difficulty are associated with increased activation of the 

dorsolateral prefrontal cortex (e.g., Kroger et al., 2002).  

Neuroimaging studies of numerical reasoning demonstrate consistent activation in 

frontal regions (e.g., see Sokolowski et al., 2017). However, the amount of frontal activity 

appears to be somewhat dependent on development and task difficulty. Early in 

development children tend to rely heavily on frontal regions but over time a general shift 

occurs and parietal regions become more actively engaged (Ansari et al., 2005; Cantlon et 

al., 2006; Zamarian, Ischebeck, & Delazer, 2009). Relatedly, rote number processing, 

including memorized arithmetic facts, appears to rely less on frontal regions and more on 

parietal regions; calculation-based numerical reasoning, however, appears to more 

broadly recruit the fronto-parietal network. In short, fluency with number symbols and 
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arithmetic facts is associated with less frontal activity and more parietal activity. Mental 

rotation also appears to rely on frontal regions, including regions thought to reflect 

general cognitive effort, but also regions thought to underlie motor planning and control 

(e.g., premotor cortex; Zacks, 2008).  

Overall, the fronto-parietal network is implicated in both numerical and spatial 

reasoning and collectively represents the neural underpinnings of mathematical cognition 

(Desco et al., 2011; Matejko & Ansari, 2015). However, activity in the frontal regions 

appears to vary somewhat depending on task difficulty. In the current study, we expected 

to find more diffuse frontal activity for mental rotation and arithmetic compared to basic 

symbolic number processes.  

 

3.2.3     The Present Study 

The purpose of the current study was to identify underlying neuroanatomical structures 

that converge across multiple empirical neuroimaging studies to support numerical, 

arithmetical, and spatial reasoning at the meta-analytic level. We targeted these three 

cognitive functions because they represent some of the most well-established building 

blocks of mathematics (e.g., see Mix & Cheng, 2012; LeFevre et al., 2010). Relatedly, a 

better understanding of the neural correlates of these skills might provide additional 

evidence and insights into the historically tight relationship between spatial and 

mathematical thinking (Smith, 1964; Mix & Cheng, 2012). Another motivating factor 

behind this study was the intent to merge two traditionally separate bodies of 

neuroimaging research; one devoted to numerical processes and the other devoted to 

mental rotation. Critically, each body of literature suggests that numerical reasoning and 

mental rotation are sub-served by a highly overlapping fronto-parietal network; the IPS 

being of particular interest within each distinct body of literature. Thus, one of the aims of 

this study was to examine the common and distinct regions in and around the IPS as they 

relate to numerical and spatial processes. Identifying brain regions that converge and 

diverge across the targeted constructs is an important step in working towards a better 

operational understanding of the brain (e.g., see Price & Friston, 2005). That is, rather 

than assign disciplinary specific terminology to different brain structures based on the 
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findings from independent studies (e.g., the “number module”), a more fruitful approach 

may be to evaluate and define functional brain regions across studies and according to the 

operations that different areas perform (Price & Friston, 2005). Quantitative fMRI meta-

analytic techniques, such as coordinate based Activation Likelihood Estimation (ALE), 

are ideally suited for this purpose (Eickhoff et al., 2009). By pooling data from different 

studies, which examine the same construct (e.g., mental arithmetic) but may employ 

variations of the experimental approach, one is better able to identify consistent responses 

across experiments (Laird et al., 2009a; Laird et al., 2009b). In addition, this approach 

may help combat common problems associated with individual fMRI studies, including 

small sample sizes (low power), low reliability, and the problems inherent to the 

subtraction logic used to differentiate between two conditions (Price, Devlin, Moore, 

Morton, Laird, 2005).   

 Against the background of the literature reviewed above, we entered this study 

with several predictions (see Figure 3.1 and Table 3.1). Broadly speaking, we predicted 

the fronto-parietal network would be implicated in all three cognitive tasks. However, we 

predicted more frontal activation for arithmetic and mental rotation compared to basic 

symbolic number processing due to the higher cognitive demands of the former tasks. 

That is, from an operational perspective, we expected to see overlap between mental 

arithmetic and mental rotation due to the shared need to mental manipulate information 

(be they objects or numbers). We also reasoned that there may be regions of overlap 

specific to symbolic number and arithmetic processes, but not mental rotation. The 

presence of these regions, potentially in and around the left angular gyrus, might suggest 

areas that deal more exclusively with the representation of symbolic number compared to 

magnitudes more generally (e.g., angles of rotation). Finally, we predicted that we might 

identify regions that are specific to mental rotation that correspond to mental imagery and 

motor control.  

In sum, by revealing the neural correlates of all three cognitive processes we 

aimed to systematically test the ways in which spatial and numerical cognition may 

converge and diverge in the brain. Specifically, we sought out to tease apart regions of 

activation subserving mental manipulation versus symbolic number representation. 
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Table 3.1 

Names of contrasts carried out in the meta-analysis and main mental process remaining 

after the contrast has been performed.  

 
 

3.3     Methods 
 

3.3.1     Literature Search and Article Selection 

  
Three separate literature searches were conducted; one for each cognitive construct of 

interest. Each literature search involved the same two-step process: (1) a search of the 

PUBMED and PsychInfo databases, and (2) a review of the reference sections for any 

other relevant papers that may not have shown up in the initial search. Although the 

inclusion/exclusion criteria differed somewhat across constructs (detailed below), we 

adhered to the following general guidelines when deciding whether or not a study was 

relevant for inclusion: (1) Studies had to use and report whole-brain group analyses with 

stereotactic coordinates in Talairach/Tournoux or Montreal Neurological Institute (MNI) 

space. Contrasts that used region of interest (ROI) or multivariate statistical approaches 

were excluded; (2) Studies had to include a sample of healthy adults; (3) Only fMRI or 

PET imaging methods were accepted as these methods have comparable spatial 

uncertainty; (4) Studies had to have contrasts with active control conditions; studies that 

included contrasts against baseline, rest, or fixation were excluded. Note that all studies 

involved button/computer responses; (5) Studies had to be published in English. Our 

literature search includes papers published prior to August 9th 2018.     
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3.3.1.1     Mental Rotation 

 

Combinations of the key terms “mental rotation,” “mental imagery,” “spatial,” “visual-

spatial,” “visuospatial,” “object rotation,” “mental transformation,” “PET,” “positron 

emission topography,” “fMRI,” “functional magnetic resonance imaging,” 

“neuroimaging,” and “imaging” were entered into the search databases. Studies that 

included the mental rotation of 2D or 3D task stimuli, including depictions of real world 

objects or abstract shapes, were included. As a result, the mental rotation ALE map is 

largely made up of studies that involved the mental rotation of 2D or 3D task stimuli 

contrasted against an active control condition. As is typical in mental rotation tasks, the 

control condition involved presenting participants with the same stimulus type and 

required the same response as the other mental rotation trials (e.g., ‘same’ or ‘different’ 

response) but the angle of disparity between the objects being compared was categorically 

smaller (e.g., < 30ﾟ) or 0. Studies were excluded if they, 1) involved the mental rotation 

of body parts (e.g., hands), 2) included contrasts that included mental rotation of number 

symbols, and 3) were designed to isolate stimulus-dependent mental rotation neural 

activation (e.g., contrasts mentally rotate tools>non-tools). We excluded studies that 

included mental rotation of body parts because prior research has found that mental 

rotation of body parts is distinguishable from mental rotation of objects (e.g., see 

Tomasino & Gremese, 2016). Moreover, research on relations between mental rotation 

and mathematics is almost exclusively based on paradigms that involve the mental 

rotation of objects (and not body parts). Thus, in an attempt to better reveal neural 

correlates of the well-established behavioral relations between mental rotation and 

mathematics (Mix & Cheng, 2012), we deliberately excluded studies that included 

rotation of body parts. 
Table 3.2 provides a detailed summary of each study included in the mental 

rotation meta-analysis, including details on the number of participants per study, type of 

contrasts run, and the number of foci reported. In total, 28 studies (papers) met the 

inclusion criteria, providing data on 363 healthy adult participants. These studies included 

276 activation foci obtained from 45 contrasts.  
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3.3.1.2     Symbolic Number 

 

The symbolic number map was initially created in a prior study by Sokolowski et al. 

(2017). Using the two-step literature search process as outlined above, the authors 

conducted a meta search for studies on numerical and non-numerical magnitude 

processing. The key terms used in this search included: “number,” “numeral,” “symbol” 

“nonsymbolic,” “magnitude,” “fMRI,” “PET,” “functional magnetic resonance imaging,” 

“positron emission topography,” “neuroimage,” “imaging,” “congruent,” “incongruent,” 

“stroop,” “quantity,” “amount,” “physical size,” “numerical size,” “object size,” “size,” 

“size interference,” “length,” “duration,” “distance,” and “area”. For the purpose of the 

current study, we only included studies from the meta-analysis by Sokolowski et al. 

(2017a; 2017b) that included active and intentional symbolic number processing. 

Additionally, only studies that included whole numbers were included. As shown in Table 

3.3, the majority of symbolic number studies used a number comparison paradigm where 

participants were asked to make within category comparisons (large vs. small numbers) or 

between category comparisons (number vs. size comparison).  Studies were excluded if 

they contained 1) only nonsymbolic number processing or non-numerical magnitude 

processing, 2) only passive viewing or automatic processing. Notably, the current study 

(unlike previous basic number processing meta-analyses; Sokolowski et al., 2017a, 

2017b) excluded passive viewing tasks in an attempt to more closely align the symbolic 

number processing map to the novel arithmetic and mental rotation maps.  

Table 3.3 provides a detailed summary of each study included in the symbolic 

number meta-analysis, including details on the number of participants per study, type of 

contrasts run, and the number of foci reported. In total, 24 studies (papers) met the 

inclusion criteria, providing data on 396 healthy adult participants. These studies included 

229 activation foci obtained from 42 contrasts.  

 

3.3.1.3     Mental Arithmetic 
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Combinations of the key terms “arithmetic”, “mental arithmetic”, “problem-solving”, 

“math”, “arithmetic operations,” “addition”, “subtraction”, “multiplication”, 

“division,” “mental math” “PET,” “positron emission topography,” “fMRI,” “functional 

magnetic resonance imaging,” “neuroimaging,” and “imaging” were entered into the 

search databases. Studies were included if they involved arithmetic with integers and 

visually presented problem stimuli requiring active responses done on a computer/button 

press. In an effort to create a general map of mental arithmetic all problem types were 

included (e.g., easy/automatically recalled facts vs. difficult problems involving overt 

calculation). Moreover, because prior research has revealed distinct brain regions 

dependent on the operation being performed (e.g., multiplication vs. addition; see Table 

3.4), we included contrasts between operation types. Studies were excluded if they 1) 

involved arithmetic with fractions and decimals 2) reported only effects relating to 

arithmetic training. We excluded studies that involved arithmetic with fractions or 

decimals in an effort to best align the arithmetic and symbolic number maps.  

Table 3.4 provides a detailed summary of each study included in the mental 

arithmetic meta-analysis, including details on the number of participants per study, type 

of contrasts run, and the number of foci reported. In total, 31 studies (papers) met the 

inclusion criteria, providing data on 527 healthy adult participants. These studies included 

710 activation foci obtained from 80 contrasts.  

 

3.3.2     Analysis Procedure 

 

All analyses were done using GingerALE version 2.3.6, a freely available application by 

BrainMap (http://www.brainmap.org; Eickoff et al., 2017, 2012, 2009; Turkeltaub et al., 

2012). Preparation of the data to be analyzed in GingerALE was conducted with two 

programs developed by BrainMap: Scribe (version 3.3) and Sleuth (version 2.4). Scribe 

was used to code specific study details and input the coordinates (i.e. foci) from all 

relevant papers that were not already available in BrainMap database. Sleuth was used to 

select relevant experimental contrasts from papers in the BrainMap database, as well as 

those we entered into scribe, and create a text-file with foci included in the meta-analyses. 

Foci were grouped by subject group. Prior to analyses, all foci (coordinates) were 
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converted into a common Talairach space; a process that involved transforming MNI 

coordinates into Talairach space. This was computed in Sleuth using the Lancaster 

transformation icbm2tal (Laird et al., 2010; Lancaster et al., 2007).  Finally, GingerALE 

was used to carry out single dataset meta-analyses for each construct. That is, a 3D map 

was created for each construct. These single dataset analyses were then used to carry out 

conjunction and contrast (subtraction) analyses.  

 

3.3.2.1     Single Dataset Analyses 

 

The present meta-analysis used activation likelihood estimation (ALE) to examine 

patterns of brain activity related to basic symbolic number processes, arithmetic, and 

mental rotation. ALE is used to quantitatively synthesize peak activation locations across 

many empirical neuroimaging studies in stereotactic coordinates (x, y, z) on normalized 

and ‘standard’ brain templates (Talairach or MNI). The input for ALE meta-analyses is 

3D coordinates of peak activation within an empirical study that are referred to as foci. 

An ALE analysis involves modeling the foci from contrasts within each study as centers 

of 3D Gaussian probability distributions (Eickoff et al., 2009). This is done to model the 

spatial uncertainty associated with coordinate-based point estimates. The ALE algorithm 

then generates 3D activation maps by finding the maximum of each foci group’s Gaussian 

(Research Imagining Institute UTHSCSA [RII], 2013). This approach of using the 

maximum is a non-additive method and was created to deal with problems of within-

experiment effects (e.g., see Turkeltaub et al., 2012). More specifically, the ALE 

algorithm was modified in an effort to prevent the influence of between study differences 

in the number of within study contrasts; a limitation of earlier ALE meta-analyses 

(Eickhoff et al., 2009; Turkeltaub et al., 2012). On a related note, ALE accounts for 

differences in sample sizes between studies by adjusting the shape of the Gaussian 

distribution; larger sample sizes are weighted to have a tighter and taller Gaussian. The 

3D activation maps are referred to as pre-ALE Modeled Activation (MA) maps and are 

generated for each contrast coded for and entered into GingerALE. It is through 

combining each MA map that a single dataset ALE map is created (RII, 2013). More 
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specifically, the ALE maps are computed as the voxel-wise union of the MA maps across 

all studies.  

 GingerALE then creates a null-distribution by randomly redistributing the ALE 

scores and probability statistics from the activation maps. This procedure results in an 

analog brain space that shares the same properties as the original data, such as number of 

foci and sample sizes, but assumes no preferences for the spatial arrangement of the data. 

The null-distribution is then used to calculate the probability of obtaining statistically 

meaningful clusters present in the actual data. More specifically, the ALE algorithm 

performs a random-effects significance test and determines whether the clustering of 

converging areas of activity across contrasts is greater than chance. This process results in 

a parametric 3D map of the data along with the associated p-values.  

 Once the p-value image has been obtained, it is then used to set a significance 

threshold on the ALE scores (RII, 2013). In the present study, we used the recommended 

cluster-forming uncorrected threshold of p < .001 and the cluster-level corrected threshold 

of p < .05, obtained from running 1000 threshold permutations (Eickhoff et a., 2012; RII, 

2013). This approach addresses the issue of multiple-comparisons through family-wise 

error (FEW) correction and has been found to provide optimal compromise between 

sensitivity and specificity (Eickoff et al., 2017).  

 Lastly, GingerALE generates a list of anatomical regions (clusters) that have 

passed the selected thresholds. GingerALE also provides the following statistics for each 

cluster identified: volume (mm3), bounds, weighted center, and the locations and values at 

peaks within the region. Anatomical labels are also provided for each cluster using 

Talairach Daemon (talairach.org). In order to visualize the results (i.e., each cluster), we 

used a combination of Mango (RII, 2015) and the BrainNet toolbox for MATLAB (Xia, 

Wang, & He, 2013). To supplement the anatomical labels provided by Talairach Daemon, 

we also report on the MNI labels provided in Anatomy Toolbox v2.2c (Eickhoff et al., 

2005). This allowed us to more narrowly define certain anatomical regions, such as gyri, 

sulci, and even sulci subdivisions.  

 

3.3.2.2     Conjunction and Contrast Analyses 
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Conjunction and contrast analyses were conducted in GingerALE and used to identify 

overlapping and distinct brain regions associated with symbolic number, arithmetic, and 

mental rotation. The single dataset ALE maps described above provided the bases for 

these analyses. We used an uncorrected threshold of p <.01 with 5000 threshold 

permutations and a minimum cluster volume of 50 mm3. Note that the cluster-level 

correction used to produce the single dataset ALE maps (reported above), is not available 

for conjunction and contrast analyses. The choice to use a threshold of p < .01 was based 

on its use in prior meta-analyses (e.g., see Pollack & Ashby, 2017; Sokolowski et al., 

2017a and 2017b). Moreover, the use of   p < .01 is appropriate given that the clusters 

used for conjunction and contrast analyses have already passed the strict cluster 

thresholds used to make the single data ALE maps.  

 Conjunction analyses were conducted in a pairwise fashion to compare regions of 

overlap amongst all three cognitive constructs.  For each conjunction analysis, ALE uses 

the single dataset ALE maps for each construct of interest (e.g., symbolic number and 

mental rotation) and looks for voxels that are significantly active across both datasets. A 

conjunction or overlapping region is identified if it passes the statistical thresholds noted 

above and reaches a minimum size of 50 mm3. The following three conjunctions were 

performed: symbolic ∩ mental rotation; symbolic ∩ arithmetic; mental rotation ∩ 

arithmetic. 

 Contrast analyses were conducted in order to determine regions of distinct 

activation between the three constructs. These analyses involved subtracting one single 

dataset ALE map from another. To conduct the subtraction analyses, ALE first pools the 

data from across the two studies and then randomly distributes the data into two 

groupings that are equal in size to the original datasets. One null dataset is then subtracted 

from the other. The remaining image is then compared to the true data. After a set number 

of permutations have been performed, a p-value image is created indicating where the 

true data’s values sit on the distribution of values for any given voxel. In the current 

study, we ran 5000 permutations with an uncorrected threshold of p < .01. The following 

six contrasts were performed: symbolic > mental rotation; symbolic > arithmetic; mental 

rotation > symbolic; mental rotation > arithmetic; arithmetic > symbolic; arithmetic > 
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mental rotation. To simply the interpretation of ALE contrast images, they are converted 

into z-scores.  
 

Table 3.2 

Summary of studies included in the mental rotation meta-analysis.  
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Table 3.3 

Summary of studies included in the symbolic number meta-analysis.  
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Table 3.4 

 

Summary of studies included in the mental arithmetic meta-analysis. 
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3.4     Results 
 

3.4.1     Single Dataset Meta-Analyses 
 

3.4.1.1     Mental Rotation ALE Map 
 

The ALE map for mental rotation included 28 individual studies (Table 3.5) and revealed 

six clusters of convergent brain regions associated with mental rotation performance. 

From largest to smallest, these regions included the right precuneus (hIP3), left superior 

parietal lobe, left inferior parietal lobe, left middle frontal gyrus, right middle frontal 

gyrus, and left middle frontal gyrus (Figure 3.2; see Table 3.5 for details). In sum, mental 

rotation was associated with neural activity in the bilateral parietal and frontal regions, 

with the largest regions of convergence in the right IPS.  

 

3.4.1.2     Symbolic Number ALE Map 
 

The ALE map for basic symbolic number skills included 24 individual studies (Table 3.6) 

and revealed four clusters of convergent brain regions associated with symbolic number 

processing. From largest to smallest, these regions included the left superior parietal 

lobule, right inferior parietal lobe (IPS), right superior frontal gyrus, and right insula 
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(Figure 3.2; see Table 3.6 for details). In sum, symbolic number processing was 

associated bilateral parietal activity and right frontal activity.  

 

3.4.1.3     Mental Arithmetic ALE Map 

The ALE map for mental arithmetic included 31 individual studies (Table 3.7) and 

revealed nine clusters of convergent brain regions associated with mental arithmetic. 

From largest to smallest, these regions included the left inferior parietal lobule (hIP3), 

right precuneus, left inferior frontal gyrus, left superior frontal gyrus, left insula, right 

insula, right middle frontal gyrus, left middle frontal gyrus, and right sub-gyral. (Figure 

3.2; see Table 3.7 for details). In sum, mental arithmetic was associated with neural 

activity in the left IPS and a host of bilateral parietal and frontal regions.  

 

3.4.1.4     Summary of Single Dataset Meta-Analyses 
 

All three cognitive tasks were associated with brain activity in fronto-parietal cortex (see 

Figure 3.3). More specifically, for all three tasks the largest region of convergence was 

found in the IPS as well as neighboring regions including the inferior and superior 

parietal lobes. Additionally, all three tasks were associated with frontal activity.  
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Table 3.5 

 

Mental rotation single dataset analyses. 

 
 

Table 3.6  

 

Symbolic number single dataset analyses.  
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Table 3.7  

 

Mental arithmetic single dataset analyses.  
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Figure 3.2   Single dataset ALE maps for each cognitive construct of interest.  

 

 

 
Figure 3.3    Qualitative map of overlapping ALE maps for each cognitive process. 

 

3.4.2     Conjunction and Contrast Analyses 

 

Conjunction and contrast analyses were computed to identify regions of brain activation 

that were overlapping and distinct for mental rotation, arithmetic, and symbolic number 

processing. Each conjunction and contrast analysis was carried out through a series of 
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pairwise comparisons. All reported results were statistically significant at an uncorrected 

threshold of p < .01.  

 

3.4.2.1     Conjunction and Contrast ALE Maps: Mental 

        Rotation and Symbolic Number  
 

The conjunction analysis for mental rotation and symbolic number revealed five brain 

regions that were activated by both cognitive processes, including the right inferior 

parietal lobule (IPS), the left superior parietal lobule, the left inferior parietal lobule (IPS), 

and two separate regions of the precuneus (Figure 3.4; Table 3.8).  

 Contrast analyses revealed several brain regions that were specific to mental 

rotation (i.e., mental rotation > number), including the right precuneus, left middle frontal 

gyrus, left precuneus, right precuneus, right superior frontal gyrus, and the left cuneus 

(Figure 3.4; Table 3.8). Regions that were specific to number (i.e., number > mental 

rotation) included the left inferior parietal lobule (hIP3) and right claustrum/insula 

(Figure 3.4; Table 3.8).   

 These analyses highlight that both mental rotation and symbolic number 

processing were associated with overlapping brain activity in around the parietal lobe. 

However, each construct was also sub-served by specific distinct regions within the 

parietal lobe. Additionally, mental rotation was associated with frontal activation in the 

superior and middle frontal gyri.  

 

3.4.2.2     Conjunction and Contrast ALE Maps: Mental 

        Rotation and Mental Arithmetic  
 

The conjunction analysis for mental rotation and mental arithmetic revealed six brain 

regions that were activated by both cognitive processes. From largest to smallest, these 

regions included the right precuneus (hIP3), left superior parietal lobule, left inferior 

parietal lobule, left sub-gyral, left middle frontal gyrus, and right sub-gyral (Figure 3.4; 

Table 3.9).  
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 Contrast analyses identified brain regions that were specifically related to mental 

rotation (i.e., mental rotation > mental arithmetic) including, the right superior parietal 

lobule, two separated regions of the right precuneus, and the left postcentral gyrus (Figure 

3.4; Table 3.9). Contrast analyses also identified brain regions that were specifically 

related to mental arithmetic (i.e., mental arithmetic > mental rotation) including the left 

inferior frontal gyrus, left precuneus/angular gyrus, right precuneus, right inferior parietal 

lobule, right insula, left claustrum, right medial frontal gyrus, left medial frontal gyrus, 

right middle frontal gyrus, left inferior parietal lobe (hIP2), left inferior frontal gyrus, and 

left middle frontal gyrus (Figure 3.4; Table 3.9).  

 Together, these conjunction and contrast analyses revealed that mental rotation 

and mental arithmetic were associated with overlapping brain activity in regions 

associated with the fronto-parietal network. However, each task was also associated with 

distinct activity in the parietal lobe and in the case of mental arithmetic, regions in the 

frontal lobe as well.  

 

3.4.2.3     Conjunction and Contrast ALE Maps: Mental 

        Arithmetic and Symbolic Number  
 

Results of the conjunction analysis for mental arithmetic and symbolic number revealed 

five brain regions that were activated by both tasks. These regions included large bilateral 

regions of the superior and inferior parietal lobes, including the IPS, right insula, and the 

left superior frontal gyrus (Figure 3.4; Table 3.10).  

 Contrast analyses identified brain regions specifically related to mental arithmetic 

((i.e., mental arithmetic > symbolic number), including the left inferior frontal gyrus, left 

medial frontal gyrus, right precuneus, right inferior parietal lobule, left sub-gyral regions, 

left precuneus, left claustrum, left inferior parietal lobule, right inferior frontal gyrus, 

right middle frontal gyrus, left middle frontal gyrus, left precuneus, and another region of 

the right middle frontal gyrus. No brain regions were specifically activated during 

symbolic number processing that were not also activated during arithmetic (i.e., number > 

mental arithmetic).  
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 Therefore, mental arithmetic and symbolic number were associated with large 

overlapping regions in the bilateral parietal lobes, including all embankments of the IPS 

(i.e., hIP1-3). Mental arithmetic was also associated with distinct brain activity in a 

number of regions in the fronto-parietal network. There was no distinct brain associated 

with symbolic number.    
 

Table 3.8 

 

Conjunction and contrast analyses (mental rotation, number) 

Note. Bolded numbers represent clusters that passed the uncorrected threshold of p < .001 whereas un-

bolded number indicate cluster regions significant at p < .01.  
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Table 3.9 

Conjunction and contrast analyses (mental rotation, mental arithmetic) 

 

Note. Bolded numbers represent clusters that passed the uncorrected threshold of p < .001 whereas un-
bolded number indicate cluster regions significant at p < .01.  
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Table 3.10 

 

Conjunction and contrast analyses (mental arithmetic, number) 

 

Note. Bolded numbers represent clusters that passed the uncorrected threshold of p < .001 whereas un-

bolded number indicate cluster regions significant at p < .01.  
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Figure 3.4   Brain regions associated with the conjunction and contrast analyses. Note: * 

indicates regions that passed the uncorrected threshold of p < .001. 
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3.5     Discussion 

 

This study was designed to achieve two goals. First, we aimed to reveal the locations of 

brain regions associated with neural activity across three key aspects of mathematical 

thinking: Basic symbolic number processing, mental arithmetic, and spatial reasoning 

(mental rotation). Second, we aimed to go beyond identifying the locations of these 

processes, by also testing theoretically-informed predictions as to when, why, and where 

we should expect to see cognitively-defined associations and dissociations between 

numerical and spatial processing (see Figure 3.1 and Table 3.1). Specifically, given the 

common need to engage in mental manipulation, we predicted overlap in brain regions 

subserving this shared process between mental arithmetic and mental rotation. Using 

similar logic, we aimed to reveal regions more sensitive to symbolic number processing 

by comparing neural activity common to symbolic number and arithmetic processes, but 

not mental rotation. Examining these three processes provided a means to examine the 

representation versus manipulation of numerical information in the brain. Moreover, by 

also studying the neural correlates of mental rotation, we were able to better pinpoint 

specific points of convergence and divergence between spatial and numerical processing.  

 Overall, results of the current quantitative meta-analyses revealed considerable 

overlap across mental rotation, arithmetic, and symbolic number processing in bilateral 

regions along the parietal lobe. This was apparent through a qualitative comparison of the 

meta-analytic ALE maps for each cognitive task (i.e., single dataset meta-analyses), but 

critically, further revealed through quantitative conjunction analyses. More specifically, 

the IPS was found to be the largest and most consistent region of overlap across all three 

cognitive tasks. Whereas the left IPS was the largest region of activation for symbolic 

number and arithmetic, the right IPS was the largest region of activation for mental 

rotation. The neighboring regions of the inferior and superior parietal lobules were also 

common to all three tasks. In addition, mental rotation and mental arithmetic were also 

associated with overlapping frontal regions, namely the middle frontal gyrus.   

 The results of the contrast analyses revealed several distinct regions of activity 

associated with each task. Despite widespread regions of overlap in the bilateral parietal 

lobes, all three tasks were also found to activate distinct activity in nearby parietal 
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regions. Bilateral regions of the inferior parietal lobes, including the left IPS, were more 

active for symbolic number processing, including arithmetic, compared to mental 

rotation. Compared to symbolic number and arithmetic processes, mental rotation was 

associated with greater activity in the right precuneus. Regions common to both mental 

manipulation tasks (i.e., mental arithmetic and mental rotation), but not basic symbolic 

number processes, included the middle frontal gyrus. Lastly, compared to basic numerical 

processes and mental rotation, mental arithmetic was associated with a host of unique 

regions in both frontal and parietal regions.    

 In summary, our findings indicate that the performance of symbolic number 

processing, mental arithmetic, and mental rotation are all associated with widespread 

activity in the bilateral parietal lobes. Mental rotation and mental arithmetic were also 

associated with common frontal activity in the left middle frontal gyrus. Mental 

arithmetic and symbolic number were associated with common frontal activity in the right 

insula/claustrum. These findings provide important insight into the neural regions that 

support mathematical thinking more generally and the neural underpinnings of numerical 

and spatial reasoning more specifically. In the following sections, we discuss these key 

findings and offer several theoretical accounts for why spatial and numerical cognition 

recruit a common bilateral parietal network. We then turn our attention to brains regions 

found to be more uniquely active for some cognitive operations (e.g., mental 

manipulation) compared to others (symbolic processing).      

 

3.5.1     Brain Regions Common to All Three Cognitive Tasks  
 

In line with prior research and theory, our findings suggest the parietal lobe is actively 

engaged during various mathematical tasks (Desco et al., 2011; Matejko & Ansari, 2015). 

More specifically, the neural activity associated with all three mathematical reasoning 

domains – symbolic number processing, arithmetic, and mental rotation – were all found 

to recruit the bilateral IPS and the closely neighboring regions of the inferior and superior 

parietal lobes. These results challenge domain-specific accounts of the IPS, suggesting 

instead that the IPS may play a more general role in mathematical cognition. 
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 What explains the observed neural overlap between number, arithmetic, and 

mental rotation? One explanation is that all three processes are part of a general 

magnitude system (Walsh, 2003; Leibovitz, Naama, Maayan, & Henik, 2017). That is, all 

three tasks involve making comparisons and judgments about magnitudes. In the case of 

number and arithmetic, participants are required to reason about discrete and symbolic 

quantities (numerals 0-9). Mental rotation, however, involves reasoning about continuous 

relations and degrees of magnitude between objects (e.g., angles of rotation). The 

common need to reason about quantitative relations between objects (be they symbolic 

numbers or meaningless objects) may indeed be one reason for the observed overlap. That 

time and luminance judgments have also been found to consistently activate bilateral 

parietal regions (e.g., see Walsh, 2003), provides further evidence that a general 

magnitude system might be at work.    

  Another way in which number, arithmetic, and mental rotation might be linked is 

through a common action-based neural network dedicated to perceiving and acting on 

objects.  Critically, this view is not at odds with the general magnitude theory, but aims to 

extend it through incorporating goal-directed behavior into the account (Walsh, 2003). 

For example, according to Walsh’s ‘a theory of magnitude,’ space, quantity, and time are 

all linked through a common metric for action (Walsh, 2003). In this view, numbers and 

mental rotation stimuli (e.g., 3D cube figures) are alike in that they both represent objects 

to be acted on. Indeed, there is both theoretical as well as empirical support for the 

embodied perspective that numbers – although abstract – rely on neural resources 

specialized for interacting with the physical world (e.g., see  Anderson, 2010; 2015; 

Lakoff & Núñez, 2000; Marghetis, Núñez, & Bergen, 2014). According to the ‘neuronal 

re-cycling hypothesis’ (Dehaene & Cohen, 2007), numbers as well as other mathematical 

symbols, may co-opt or re-use the brain’s more ancient and evolutionarily adaptive 

spatial and sensorimotor systems; systems that originally served the purpose of 

interacting with tools, objects, and locations in space (Johnson-Frey, 2003; Lakoff & 

Núñez, 2000; Dehaene et al., 2003). In short, “we may recycle the brain’s spatial prowess 

to navigate the abstract mathematical world” (Marghetis, Núñez, & Bergen, 2014, p. 

1580). 
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Taken together, both the ‘general magnitude theory’ and ‘neuronal re-cycling 

hypothesis’ present plausible explanations for the common neural activity observed 

between all three processes. More specifically, the ‘neuronal re-cycling hypothesis’ offers 

a more pointed explanation of why spatial and numerical thinking may recruit common 

neural substrate.  

 

3.5.2     Spatial Visualization as a Key Contributor to Spatial- 

     Numerical Relations 

 

The present findings offer an extended possibility for the involvement of spatial 

processing in performing numerical and mathematical tasks. Although prior research 

efforts have examined neural relations between lower-level spatial processes, such as 

making simple comparative judgments involving a variety of spatial magnitudes (e.g., 

line lengths), the relations between more cognitively demanding visual-spatial reasoning 

tasks, such as mental rotation, and numerical cognition has yet to be examined. Our 

findings demonstrate that brain regions associated with mental rotation – a widely 

accepted proxy for higher-level visual-spatial reasoning – are also activated during 

numerical and arithmetical reasoning. This finding suggests that the relation between 

space and number is not limited to lower-level spatial processes, namely magnitude 

judgements. Instead, our findings hint at the possibility that higher-level spatial skills may 

be implicated in the formation of numerical-spatial associations. Consistent with prior 

behavioral findings, including the ‘mental number line’ hypothesis, spatial visualization 

skills may play a critical role in mapping number as well as other mathematical entities to 

space. In other words, one of the ways humans might conceptualize the meaning of 

numbers and various other mathematical concepts is by visualizing and, through practice, 

internalizing their inherent visual-spatial relations and structure. Further research is 

needed to more fully examine this possibility.   

 

3.5.3     Distinct Brain Regions Associated with Each Task 
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3.5.3.1     Brain Regions More Attuned to Symbolic Number 

                Processing 

 

To gain insight into brain regions potentially underlying symbolic number processing, we 

carried out conjunction analyses between the symbolic number and arithmetic maps and 

then contrasted each individual map with the mental rotation map. Based on this logic, we 

hypothesized that if a symbolic number region exists it should be present in both the 

symbolic number and arithmetic maps and either absent or present to a much lesser extent 

in the mental rotation map. This approach yielded evidence that compared to mental 

rotation, symbolic numerical reasoning, including arithmetic, may be associated with 

larger regions of activity in the inferior parietal lobes, including the left IPS and regions 

that appear to overlap with the left angular gyrus. One explanation for this finding might 

have to do with the relatively ease and automaticity in which individuals are able to 

access the meaning of numerical symbols and basic operations (e.g., 2 + 1). Prior research 

indicates that fluency and automatic processing of numbers and arithmetic facts is 

associated with activity in left lateralized ‘language based’ regions, namely the left 

angular gyrus and supramarginal gyrus (Dehaene et al., 2003; Polspoel, Peters, 

Vandermosten, & De Smedt, 2017). The current findings might reflect the neural 

consequences of learning the symbolic number system and associated arithmetic facts. 

Compared to mental rotation, symbolic number and arithmetic facts are more likely to be 

stored as verbally mediated knowledge. This view is in general agreement with Dehaene’s 

triple code model (2003), in which the left angular gyrus is posited as the location where 

number names and arithmetical facts are stored.  

 It is worth mentioning that the above findings are based on an uncorrected p-value 

of .01. When the more stringent cut-off is used (p < .001), a different pattern of findings 

emerges. Instead, the data fail to support the presence of regions unique to symbolic 

number compared to mental rotation. Thus, the above finding of regions more attuned to 

symbolic number compared to mental rotation should be interpreted with caution. A more 

parsimonious interpretation of the current meta-analysis is that both numerical and spatial 

reasoning engage highly similar bilateral regions of the parietal lobe. Evidently, more 

research is needed to further disentangle whether, when, and how symbolic number 
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processes and visual-spatial reasoning engage distinct neural regions. The findings from 

these studies may prove useful in advancing theories of symbolic specific regions (triple 

code model) versus more general multi-purpose theories of cognitive processing (e.g., 

neuronal recycling and redeployment).   

 

3.5.3.2     Brain Regions More Attuned to Mental 

                Manipulation  

 

Using the same logic as above, we also aimed to reveal brain regions potentially 

underlying mental manipulation. That is, we carried out conjunction analyses between the 

mental arithmetic and mental rotation maps and then contrasted each individual map with 

the symbolic number map. We reasoned that regions common to mental arithmetic and 

mental rotation but not symbolic number processing might be indicative of regions related 

to the general ability to engage in mental manipulation. Results revealed the left middle 

frontal gyrus as a potential site for mental manipulation. Note that this region survived the 

stricter threshold of p < .001. As outlined earlier, the dorsolateral prefrontal cortex, which 

is situated in the middle of the middle frontal gyri, is an important region for carrying out 

top-down executive tasks, such a planning, working memory, inhibition, and abstract 

reasoning (Owen et al., 2005; Miller & Cummings, 2017; Smith & Jonides, 1999). The 

current findings provide further evidence that the left middle frontal gyrus may indeed 

play a role in mental manipulation of information. However, some caution is warranted, 

as this region has also been associated with a variety of other cognitive tasks including 

the identification of sound sources (Giordano et al., 2014), imagined grasping (Grafton, 

Arbib, Fadiga, & Rizzolatti, 1996), and emotional prosody in speech (Mitchell, Elliott, 

Barry, Crittenden, Woodruff, 2003). Thus, as is the case with the IPS, more research is 

needed to further operationalize the functions associated with this region.  

 The parietal lobes may also play an important role in the mental manipulation of 

information. Mental rotation has been found to consistently activate bilateral regions in 

and around the IPS (Zacks, 2008); a finding that has led some to conclude the IPS plays a 

critical role in performing visual-spatial transformations (e.g., see Jordan, Heinze, Lutz, 

Kanowski, & Jäncke, 2001; Seydell-Greenwald, Ferrara, Chambers, Newport, & Landau, 
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2017; Zacks, 2008). The current study shows that mental arithmetic is associated with 

activation in some of these same regions. These findings provide preliminary support for 

the hypothesis put forward by Hubbard et al.: “parietal mechanisms that are thought to 

support spatial transformation might be ideally suited to support arithmetic 

transformations as well” (2009, pp. 238). An important question moving forward is the 

extent to which the common overlap in the parietal regions for spatial and arithmetical 

transformations (as well as other mathematical computations) are due to shared reliance 

on visual-spatial representations. Is it a coincidence that arithmetic relies on cerebral 

cortex most strongly associated with visual-spatial reasoning and not the traditional 

language regions, namely structures in and around the left sylvan fissure (e.g., inferior 

frontal lobe and temporal regions; Monti, Parsons, & Osherson, 2009)? On the one hand, 

evidence to date suggests not. There is emerging consensus that arithmetical and 

mathematical thinking do not appear to be rooted in the neural mechanisms of natural 

language (Amalric & Dehaene, 2016; Monti & Osherson, 2011). However, the extent to 

which arithmetic operations are dependent on visual-spatial representations and not some 

other form of mental representation remains an important research question (e.g., see 

Marghetis, Núñez, & Bergen, 2014). For example, it is possible that arithmetic is carried 

out through purely symbolic or propositional processes independent from visual-spatial 

representations and also distinct from natural language mechanisms. Future research 

efforts are needed to test the extent to which the parietal regions that subserve visual-

spatial transformations also subserve mental operations devoid of visual-spatial referents.  

 

3.5.3.3     Brain Regions Associated with Mental Arithmetic 

 

Mental arithmetic was associated with widespread frontal activity. Compared to mental 

rotation and symbolic number, mental arithmetic was associated with significantly more 

activation in the following frontal regions: left inferior frontal gyrus, left medial frontal 

gyrus, and right middle frontal gyrus. Based on prior research and as noted above, these 

regions are likely representative of activity associated with executive control processes 

(e.g., see Miller & Cummings, 2017). Given that mental rotation is commonly thought to 

be a highly cognitively demanding task, it is somewhat surprising that mental arithmetic 
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was associated with more widespread frontal activity. In fact, mental rotation was not 

associated with any frontal activity that was not also engaged by mental arithmetic. This 

finding is deserving of more attention and perhaps points to differentiated frontal activity 

more attuned to the manipulation of symbols compared to less culturally defined visual-

spatial objects (e.g., 3D cube figures).   

 The findings of widespread frontal and parietal activity associated with mental 

arithmetic may be due in part to the decision to include all types of arithmetic problem 

solving. That is, the arithmetic map includes arithmetical reasoning associated with 

relatively easy problem types (e.g., 2 + 1) but also difficult problem types (37 + 68 or 3 + 

8 – 4). Thus, the arithmetic map includes questions requiring little cognitive effort as well 

as questions requiring concerted cognitive effort. These differences in the need to recall 

arithmetic facts compared to need to carryout novel calculations have been found to be 

associated with common and distinct neural networks (Zamarian,  Ischebeck,  & Delazer, 

2009). The decision to include all types of arithmetic problems was motivated by our aim 

to reveal regions associated with both basic symbol processing but also higher-level 

spatial reasoning (i.e., mental rotation). Although not directly tested, we reasoned that 

recall-based arithmetic would have more in common with basic symbolic processing and 

calculation-based arithmetic would have more in common with mental rotation. Thus, in 

an attempt to avoid such biases, we decided to include all studies on arithmetic 

processing. A logical next step is to formally test the hypothesis that low-effort arithmetic 

(recall-based) will share more neural regions associated with basic symbolic processes, 

while high-effort arithmetic (calculation-based) will share more neural regions associated 

with higher-level spatial reasoning, such as mental rotation. Such relations would provide 

additional evidence in favour of the grounded or embodied theories of the space-math 

link (as mentioned above; also see Mix et al., 2016 for further details). An absence of 

such relations would require reconsideration of such theories.  

 

3.5.3.4     Brain Regions Associated with Mental Rotation 

 

In comparison to both numerical reasoning tasks, mental rotation was more associated 

with activity in the right precuneus/superior parietal lobe. One interpretation of this 
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finding is that the precuneus may play a role in visual-spatial imagery. Indeed, one of the 

primary functions ascribed to the precuneus is visual-spatial imagery (Cavanna & 

Trimble, 2006; Fletcher et al., 1995; Oshio et al., 2010). More specifically, the precuneus 

has been suggested to play a role in directing attention in space and planning and 

imagining goal-directed movements (Cavanna & Trimble, 2006; Kawashima, Roland, & 

O’Sullivan, 1995). However, as evidenced in the present study, the precuneus has been 

found to be involved in a variety of cognitive tasks, including a pivotal role in the default 

mode network (Fransson & Marrelec, 2008). Thus, it appears that the precuneus serves a 

variety of functions, with visual-spatial (motor) imagery potentially being one of them.  

 Based on prior research, we had expected that we might see the activation of 

canonical motor regions (e.g., premotor cortex). Instead, we found very little evidence for 

activation of primary motor cortices. Like symbolic number and mental arithmetic, 

convergent activation of mental rotation was largely confined to activation in the bilateral 

parietal lobes. Although prior research has reported that mental rotation is associated with 

brain activation in motor regions (e.g., see Zacks, 2008), more recent research paints a 

more complicated picture. A recent meta-analysis suggests that the activation of motor 

cortex is dependent on experimental stimuli (Tomasino & Gremese, 2016). Mental 

rotation was found to be correlated with motor activity when the task involved imagining 

the rotation of body parts but not when it involved the rotation of objects. Thus, our 

decision to focus on the rotation of objects and to exclude studies that included rotation of 

body parts is the most probable reason for the absence of observed motor activity.  

   

3.5.4     Limitations and Future Directions 

 

Both a strength and a limitation of fMRI meta-analyses is that they provide a broad 

overview of the neural correlates of cognitive functions. However, by using this technique 

to ‘see the forest through the trees’ one runs the risks of obscuring important 

methodological details and findings. The very nature of the meta-analytic method 

employed – an averaging of peak activation across multiple studies – limits the ability to 

make specific claims about the findings. Indeed, this process may overestimate the 

amount of overlap between tasks by averaging across studies and minimizes potentially 
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small, but important, differences across paradigms. For example, our decision to include 

all types of arithmetic problems, ranging from easy to difficult, may have resulted in an 

arithmetic map that is in fact an average of two relatively distinct maps – one associated 

with solving simple problems and the other for solving complex problems. While this was 

a desirable outcome for the current study, it stands as an example of what might be 

happening more generally across and within fMRI studies. One approach to reduce 

problems associated with averaging across individuals and studies is the use of within-

subject designs. By having the same individual perform multiple tasks (e.g., mental 

rotation and number comparison), it is possible to examine whether the same voxels are 

co-activated for different tasks.  

 At the same time, it is important to recognize that co-activation does not 

necessarily indicate functional equivalence. To this point, the shared neuronal account has 

been used as evidence and a potential causal explanation for the widely observed 

behavioural links between spatial and numerical cognition (e.g., see Cheng & Mix, 2014; 

Hawes, Tepylo, & Moss, 2015). For example, even though mental rotation, basic 

numerical competencies, and arithmetic appear to recruit common parietal regions, this 

does not mean that these regions perform the same functions across all three tasks. 

Moreover, neither does it indicate that the same region is for all three tasks within 

individuals. Thus, going back to the point above, the present study is only able to provide 

a general overview of common and distinct regions associated with the three targeted 

cognitive tasks. Whether or not the overlap observed is functionally meaningful remains 

an open question; ALE meta-analyses do not permit one to evaluate patterns of activation 

within overlapping regions. Moving forward, more sensitive methods of analyzing fMRI 

data, including multivariate pattern analyses (MVPA), are needed to better understand 

ways in which the same brain region(s) performs multiple cognitive functions. To this 

aim, we see the present meta-analyses as an important first step in demonstrating the 

engagement of a common parietal network underlying numerical and spatial cognition. 

We hope the present findings prove a source of motivation to carry out more sensitive 

studies and analyses in an effort to better understand the complex neural underpinnings of 

spatial and numerical cognition.  
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In interpreting the present findings it is worth considering how our decision to 

include within-category contrasts (e.g., two-digit addition > single-digit addition) may 

have influenced the results. On the one hand, within-category contrasts provide a stringent 

control condition, allowing one to optimally control for perceptual features (e.g., visual 

processing of numerals). On the other hand, our decision to include within-category 

contrasts may have resulted in the removal of regions more typically associated with 

other processes, including visual and language processing. For example, with respect to 

our symbolic number and arithmetic maps, the inclusion of within-category contrasts may 

have resulted in the removal of lower-level numerical processes (e.g., numeral 

identification); processes which have recently been shown to correlate with neural activity 

in the ventral visual pathway, namely the inferior temporal gyrus (ITG; Baek, Daitch, 

Pinheiro-Chagas, & Parvizi, 2018; Grotheer, Jeska, & Grill-Spector, 2018; Pinheiro-

Chagas, Daitch, Parvizi, & Dehaene, 2018; Yeo, Wilkey, & Price, 2017). However, the 

presence of this region has not been consistently detected across studies to date (e.g., see 

Sokolowski et al., 2017) and appears highly sensitive to task demands and the specificity 

of the contrasts employed (e.g., see Yeo, Wilkey, & Price, 2017). Together, these reasons 

may help explain why we did not see evidence of a “number form area” in the ITG or 

more wide spread activity in regions typically associated with language processing for 

arithmetic.  

 Lastly, we acknowledge that the current study represents but one of many ways in 

which spatial and mathematical thinking may converge/diverge in the brain. Both spatial 

and mathematical abilities are not unitary constructs, but skills made up of many different 

sub-skills (Mix & Cheng, 2012). Thus, in moving forward, it will be of value to study the 

neural correlations of spatial-mathematical relations beyond the one studied here. For 

example, an emerging body of research indicates strong relations between spatial scaling 

abilities (i.e., the ability to relate distances in one space to distances in another space) and 

mathematical performance across a variety of tasks, including proportional reasoning, 

number line estimation, and comprehensive tests of school-based mathematics (Frick, 

2018; Gilligan, Hodgkiss, Thomas, & Farran, 2018; Jirout, Holmes, Ramsook, & 

Newcombe, 2018; Möhring, Frick, & Newcombe, 2018). In short, we have only just 

begun to scratch the surface of the neural underpinnings of the space-math link. 
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Opportunities to further probe the space-math link are many and varied and represent a 

promising area for future research.    

 

3.5.5     Conclusions 

 

Decades of behavioral, neuropsychological, and neuroimaging studies have demonstrated 

consistent and reliable associations between spatial and numerical processing (Hubbard et 

al., 2005; Mix & Cheng, 2012; Toomarian & Hubbard, 2018). However, much less is 

known about why and under what conditions spatial and numerical processes converge 

and/or diverge from one another (Mix & Cheng, 2012). The present study aimed to 

narrow this gap in understanding by carrying out the first systematic ALE meta-analysis 

on brain regions associated with spatial and numerical cognition. Consistent with a shared 

processing account, we revealed that symbolic number, arithmetic, and mental rotation 

processes were all associated with bilateral parietal activity. We also found evidence that 

numerical and arithmetic processing were associated with overlap in the left IPS, whereas 

mental rotation and arithmetic both showed activity in the middle frontal gyri. These 

patterns suggest regions of cortex potentially more specialized for symbolic number 

representation and domain-general mental manipulation, respectively. Additionally, 

arithmetic was associated with unique activity throughout the fronto-parietal network and 

mental rotation was associated with unique activity in the superior parietal lobe. Taken 

together, these findings contribute new insights into the neurocognitive mechanisms 

supporting spatial and numerical thought specifically, and mathematical thought more 

generally.  
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Chapter 4  

4 Integrating Numerical Cognition Research and 

Mathematics Education to Strengthen the Teaching and 

Learning of Early Number 

4.1 Citation 

This chapter is currently under review and involved the following co-authors.  

Zachary Hawes, Rebecca Merkley, Christine Stager, and Daniel Ansari.  

4.2    Introduction 

“I say moreover that you make a great, a very great mistake, if you think 
psychology, being the science of the mind’s laws, is something from which 
you can deduce definite programmes and schemes and methods of 
instruction for immediate schoolroom use. Psychology is a science, and 
teaching, is an art; and sciences never generate arts directly out of 
themselves. An intermediary inventive mind must make the application, by 
using its originality” (William James, 1899, p. 23).  

 

The above quote points to a central problem facing both educators and psychologists 

alike: How can we translate and apply the science of how children learn to the classroom? 

As this quote also reminds us, the implications for classroom instruction do not 

immediately follow from the science of learning. Instead, intermediary actions are needed 

to most optimally merge the science of learning and the practice of teaching.  

 The current study was designed to address the research-to-practice gap. Of 

primary interest was whether and to what extent both teachers and their students benefit 

from a model of teacher professional development (PD) explicitly aimed to better 

integrate research in numerical cognition with mathematics instruction. More specifically, 

we report on the design, implementation, and effects of an in-service mathematics 

Professional Development (PD) model for teachers of Kindergarten–3rd Grade. The PD 
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model centres around the translation and application of key findings from the field of 

numerical cognition – a branch of cognitive science that involves the interdisciplinary 

study of the cognitive, developmental, and neural bases of numerical and mathematical 

thought. Throughout the PD model (25 hours over a 3-month period), numerical cognition 

research serves as both a base and point of return to better understand children’s 

numerical thinking. Indeed, central to our model is the hypothesis that by better 

understanding children’s numerical thinking, teachers may be better equipped to assess, 

plan, and deliver mathematics instruction. To summarize, the present study describes and 

tests a new model of teacher PD designed to: (1) Enrich teachers’ awareness of and 

understanding of research on children’s numerical thinking, and (2) use this knowledge to 

inform teachers’ assessment and instructional practice.  

 

4.2.1    Background and Foundations on which the Current 

    Teacher PD Model was Built  
 

If research-to-practice gaps are the problem, what are some potential solutions? In this 

section we briefly review three bodies of work that have each achieved some levels of 

success in better integrating research and practice. These research programs were 

instrumental in forming the theoretical underpinnings and design of the current 

intervention.   

 One approach to narrowing the research-to-practice gap is represented by the 

invention of a methodological approach to educational interventions known as design-

research (Brown, 1992; Collins, 1992). In a nut shell, design-research involves an 

iterative cycle of intervention design, implementation, and evaluation in real-world 

learning environments (e.g., classrooms). Importantly, this occurs in partnership with the 

various stakeholders involved (e.g., teachers). Design-research was borne in response to 

the difficulties of taking lab-based learning interventions and implementing them in 

classroom and school contexts (Brown, 1992). These difficulties include the emergent 

properties of real-world learning environments (classrooms) that are the products of 

multifaceted and largely uncontrollable variables (e.g., social dynamics of individual 

students across different classrooms). As the name suggests, design-research has its basis 
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in the scientifically-informed ‘trial and error’ approaches of the design sciences, including 

engineering, artificial intelligence, and aeronautics (Collins, Joseph, & Bielaczyc, 2004; 

Nathan & Sawyer, 2014; Simon, 1969). This approach is akin to beta testing. A product is 

first designed and then released to actual users who then provide feedback, report bugs, 

etc. This feedback is then used to create a more optimally functioning and user-informed 

product. Educational design-research functions similarly. Learning interventions are not 

viewed as static, prescriptive ‘how-to-teach x’ recipes but are implemented with built-in 

feedback mechanisms. For example, teachers might be encouraged to adapt the 

intervention where they see fit based on the feedback they receive from their students. In 

the present intervention, we borrowed this particular feature of design-research. In 

designing our intervention, we built certain degrees of freedom into the intervention 

model – specifying beforehand where and what aspects of the intervention we allow and 

want to vary. Specifically, we aimed to utilize teacher expertise in the delivery of the 

student intervention activities. Teachers were encouraged to take the activities (designed 

and presented to the group by the research team) and adapt them where they saw need for 

revision. In line with design-research, we did this in an effort to a) build teacher agency 

and incorporate professional feedback into the model, and b) to gradually refine and 

ultimately build better student intervention activities (e.g., see Moss, Bruce, Caswell, 

Flynn, & Hawes, 2016).     

 Another approach to narrowing the research-practice gap, and one specific to early 

years mathematics instruction, is a form of teacher PD known as Cognitively Guided 

Instruction (CGI; Carpenter, Fennema, Franke, Levi, & Empson, 2014; Carpenter, 

Fennema, Peterson, Chiang, & Loef, 1989; Fennema, Carpenter, Franke, Levi, Jacobs, & 

Empson, 1996). At its core, CGI is an approach to working with teachers that involves 

sharing research on children’s mathematical thinking and then using this knowledge as a 

basis for assessment and instruction (Carpenter et al., 1989; Franke, Carpenter, Levi, & 

Fennema, 2001). For example, as described in various iterations of this model, teachers 

are introduced to research-based frameworks for understanding children’s arithmetic 

development and strategy use (e.g., the counting on strategy). This knowledge is then 

more readily accessible and utilized by teachers’ during their assessment and instruction 

of children’s arithmetic (Carpenter et al., 1989). While our approach to teacher PD differs 
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from CGI in some important ways, it resembles CGI in that in that it puts student thinking 

at its center. Likewise, we echo the hypotheses put forth by the authors of CGI for why 

introducing teachers’ to cognitive developmental research on children’s mathematical 

thinking can be used to leverage teacher practice and student learning. That is, research 

on children’s mathematical learning can assist teachers by providing a more organized 

and structured ‘mental model’ of the learner (Willingham, 2017), providing teachers with 

an improved reference for what to look for in terms of student thinking and what this 

means for moving forward with instruction (Carpenter et al., 1989). Unfortunately, 

despite the widespread support for CGI, the evidence that this approach leads to changes 

in student thinking is limited. For example, to our knowledge, this approach has not yet 

been subjected to a pre-post research design involving both an experimental and control 

group and, critically, using the same pre- and post-test measures across two time points 

and through comparing the effects across conditions (experimental vs. control). Using a 

more rigorous study design, the present study aims to further reveal the extent to which 

students benefit from a model of PD where the central focus is on using research on 

children’s numerical thinking to inform instruction.  

 Lastly, the current intervention builds on a model of teacher PD known as the 

Math for Young Children Project (Hawes, Moss, Caswell, Naqvi, & MacKinnon, 2017; 

Moss et al., 2016). While various iterations of this approach exist (e.g., see Bruce, Flynn, 

& Bennett, 2016; Moss, Hawes, Naqvi, & Caswell, 2015), the present study is most 

closely related to the model described in Hawes et al. 2017. In this study, the authors 

describe a 32-week teacher-led intervention aimed at improving children’s spatial and 

geometrical thinking. Similar to the current study, teachers and researchers engaged in 

semi-regular meetings to share and discuss activities and strategies for improving young 

children’s (Kindergarten – Grade 2) mathematical thinking. Teachers were provided with 

a series of intervention activities to implement in their classrooms. Critically, just as we 

do in the present study, teachers were encouraged to take the activities and ‘make them 

their own,’ adapting and revising the activities based on their own professional judgment 

and assessment of their own students’ learning needs. Compared to a control group, 

children in the intervention classrooms demonstrated widespread gains on assessments of 

spatial and geometric thinking, as well as some evidence of far transfer to a measure of 
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numerical reasoning. Other iterations of this approach to teacher PD and the associated 

classroom-based intervention have been linked to quantitative gains in children’s 

geometric and spatial reasoning, as well as qualitative evidence of change in teachers’ 

content knowledge and self-confidence (see Moss et al., 2015; Bruce & Hawes, 2015).  

In addition to incorporating features of design-research, this model of PD also 

includes two other features hypothesized to facilitate teacher change, and in turn, student 

change. These features include, 1) the design and implementation of clinical interviews 

with students, and 2) teacher engagement in mathematical tasks designed for the eventual 

implementation with students. Originally pioneered by Jean Piaget, clinical interviews 

provide an adaptive method of questioning children as a means to reveal children’s 

conceptual understandings of a given phenomenon (e.g., conservation of number; see 

Ginsburg, 1997). Prior research suggests that clinical interviews contribute to 

improvements in teachers’ capacity to assess, understand, and further promote children’s 

mathematical thinking, while also providing teachers with important insight into their 

own mathematical thinking (Clarke, Clarke, & Roche, 2011; Mast & Ginsburg, 2010; 

Moss et al., 2015). It was for these reasons, that we included the practice of teacher-

student clinical interviews in the present model. These same reasons underlay our 

decision to have teachers engage in mathematical tasks eventually intended for their 

students. In addition, we hypothesized that having teachers approach mathematical tasks 

as both learners, but also through the perspective of their own students, may lend itself to 

improved teacher content knowledge as well as comfort level (lowered anxiety) with the 

teaching and learning of mathematics.  

The present study builds on the design and approach to PD described by Hawes et 

al., (2017), but aims to extend it in some key ways. First, in the current study, we focus 

our PD on improving key facets of children’s numerical reasoning (i.e., arithmetic, 

number line estimation, and applied number problems). Given the widely recognized 

importance of young children’s numerical reasoning for later mathematical and academic 

success (e.g., see Duncan et al., 2007), it is crucial to target this area of instruction in the 

early years. Second, our model places much more emphasis on the integration of 

cognitive science and mathematics instruction. More specifically, we focus more time and 

effort sharing and discussing relations between cognitive processes and strategies and 
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their relations to mathematical learning and performance. Additionally, in accordance 

with the emerging disciplines of Mind, Brain, and Education (aka Educational 

Neuroscience), we share and discuss with teachers some of the recent insights from 

cognitive developmental neuroscience hypothesized to be relevant to the improvement of 

classroom instruction (e.g., brain plasticity, neuromyths, brain-related responses during 

arithmetic; see Dubinsky, Roehrig, & Varma, 2013). Lastly, empirical studies of the 

model have been limited to measuring the effects of the intervention at the student level. 

This study is the first to measure the effectiveness of the model at both the student and 

teacher level. Specifically, we examine the extent to which the intervention influences 

teachers’ content knowledge, self-perceived content knowledge, and math 

anxiety/comfort level.  

 

4.2.2    The Present Study  

 

The purpose of this study was to address the research-to-practice gap in the teaching and 

learning of early number. Building on the teacher PD models described above, we 

designed a 25-hour in-service PD intervention that aimed to better integrate research in 

numerical cognition with the instruction of early years mathematics. Borrowing from 

these different approaches, our model incorporates features of design-research (i.e., built-

in teacher feedback mechanisms) and uses research on children’s numerical thinking as 

the basis for facilitating both teacher and student change. For reasons provided above, as 

well as discussed in further details below (Methods), we predicted that our model of 

teacher PD would be an effective means for increasing both teacher and student learning. 

More specifically, we predicted that our intervention would lead to gains in teachers’ 

awareness and knowledge of numerical cognition research and work towards alleviating 

teacher math anxiety. In addition, our model also provided a platform to share and discuss 

research related to developmental cognitive neuroscience (i.e., research not limited to 

numerical cognition). For this reason, we predicted that teachers might also report 

increased knowledge of terminology and content related to developmental cognitive 

neuroscience more broadly. It was through engaging teachers in research and its 

application to classroom learning that we also expected to see evidence of increased 
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student learning. Given that the teacher PD was aimed at the translation and application 

of key topics within the numerical cognition literature (e.g., research related to 

cardinality, ordinality, number lines, and arithmetic strategies), we predicted that these 

would be the aspects of children’s mathematical thinking where the largest gains would 

occur.  

 

4.3     Methods 

 

4.3.1     Study Design and Procedure  

 

This study occurred over two consecutive school years (2016/2017 and 2017/2018) and 

involved a combination of two different study designs: a quasi-experimental pre-post 

research design and a within-group cross-over intervention design. The cross-over design 

was possible because the control school in the first year of the study (Year 1) participated 

as the intervention group in the second year of the study (Year 2). In total, three 

elementary schools participated across the two-year study. These schools were not 

selected at random but were based on consultation with the district school board and the 

explicit need to work with schools serving families of similar demographics (income and 

neighborhood characteristics) and highly comparable academic performance levels. With 

these constraints in mind, the school board selected three schools to participate in the 

research project. All three schools were located within the same general neighborhood, 

serving families of similar demographics and with comparable student performance on 

the standardized provincial achievement tests in mathematics and language (reading and 

writing). All three schools consistently perform below the provincial average in 

mathematics. Taken together, the three participating schools were well-matched in 

sociodemographic characteristics and mathematics performance, fulfilling our need as 

researchers to conduct research with highly comparable schools and the school board’s 

need to provide additional mathematics instructional support in these particular schools.  

 In the first year of the study, two of the three schools were randomly assigned to 

either the experimental or the ‘waitlist’ control condition (see Figure 4.1). Prior to the 

collection of pre- and post-test data, the school principal and Kindergarten to Grade 2 
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teachers gave their consent to participate. Information letters and consent forms were then 

sent home by the participating classroom teachers to the parents of children in their 

classrooms. Due to time constraints, we were unable to test all children for whom we had 

consent. For this reason, children were randomly selected to participate in the pre-post 

assessments.  

 In the second year of the study, the control group from the previous year 

participated as the experimental group. In that same year, the third school, introduced 

above, participated as a control group. The same teacher, principal, and parent/child 

consent procedure described above was employed. Likewise, children whose 

parent/guardian provided consent for them to participate were randomly selected to 

participate in the pre- and post-testing assessments. The study design and procedure were 

approved by the University of Western’s Non-Medical Research Ethics Board (NMREB) 

as well as the participating school board’s ethics committee.  

 In both years of the study, the intervention occurred over the same 3-month period 

(1st week of March to 1st week of June). Within this time frame, teachers received 5 full-

days (9am-3:30pm) of paid teacher release to participate in the intervention. Each one of 

these days were spaced out 3-4 weeks apart from one another. As outlined further below, 

each day of the intervention followed the same general structure, but varied in the specific 

content addressed (see Figure 4.1). In total, the in-school teacher intervention was 

approximately 25 hours in duration (excluding lunch and mid-morning/day breaks). All 

pre-and-post testing also occurred during the same time frame in each year of the study. 

Moreover, because some children (n=48) participated in both the control and 

experimental conditions (in different years), we tested these children at near identical pre 

and postdates across both years. This allowed us to accurately compare within-participate 

growth across both conditions (experimental vs. control). 
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Figure 4.1   A schematic of the research design/time frame and structure of the teacher 

professional development intervention.  

 

4.3.2     Participants 

 

4.3.2.1     Year 1 
 

4.3.2.1.1     Teacher Participants 
 

In the first year of the study, a total of 24 educators participated. Fifteen educators 

participated in the intervention condition and 9 educators participated in the control 

condition. The two groups were well-matched in terms of years of teaching experiences 

(Mean intervention group = 10.57 years, SD = 5.88; Mean control group = 11.00 years, 

SD = 8.43). Note that one teacher in the intervention group did not provide years of 

teaching experience. Teachers in both groups completed identical pre- and post-test 

measures prior to and immediately following the 3-month intervention period.  
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4.3.2.1.2     Child Participants 
  

A total of 107 children participated (Mage = 5.95 years, SD = 1.37; Females = 58) in the 

pre-post testing. Fifty-two children were randomly selected for pre-post testing from the 

intervention classrooms (Mage = 6.09, SD = 1.17; Females = 27) and fifty-five were 

randomly selected from the control classrooms ( Mage = 5.81, SD = 1.22; Females = 31). 

Note that random selection was done for each grade level in an effort to balance the 

number of children from each grade across both conditions. Pre- and post-testing took 

part during a two-week period before and immediately following the intervention. 

 

4.3.2.2     Year 2 
 

4.3.2.2.1     Teacher Participants 
 

A total of 27 educators participated in Study 2. Fifteen educators participated in the 

intervention condition and 12 educators participated in the control condition. The two 

groups were well-matched in terms of years of teaching experiences (Mean intervention 

group = 11.83 years, SD = 8.68; Mean control group = 10.92 years, SD = 6.35). Teachers 

in both groups completed identical pre- and post-test measures prior to and immediately 

following the 3-month intervention period.  

 

4.3.2.2.1     Child Participants 
 

A total of 121 children participated (Mage = 6.72 years, SD = 1.42; Females = 66) in the 

pre-post testing. The intervention group consisted primarily of children who had 

participated as control participants in the previous year (n=48). That is, 48 students from 

the Study 1 control group were available to take part in testing one year later (Study 2): 

This time as part of the intervention group. In order to increase the sample size and better 

match the intervention group with the Study 2 control group, an additional 9 children 

were selected to participate. In total, 57 children were randomly selected to participate in 
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the intervention group (Mage = 6.57 years, SD = 1.36; Females = 32). Sixty-four children 

were randomly selected to participate in the control group (Mage = 6.86 years, SD = 1.47; 

Females = 34. Pre- and post-testing took part during a two-week period before and 

immediately following the intervention. 

 

4.3.3     Overview of the Teacher Intervention and Rationale 

     for Including Each Component 
 

The teacher intervention occurred over 5 days spread out over a 3-month period. All 

meetings were held in the school’s library and facilitated by authors Hawes, Merkley, and 

Ansari. As shown in Figure 4.1, the focus of the first two sessions was on the foundations 

of number, the third session focused on number-space associations, and the fourth and 

fifth sessions focused on arithmetic (addition and subtraction) strategies. Table 4.1 

provides a summary of the main mathematical content/concepts addressed across 

sessions. Although each day had its own focus, the general structure of each session was 

the same. As reviewed next, each day included the same five components: 1) A 

researcher-led presentation of numerical cognition research (e.g., arithmetic strategies), 2) 

a group discussion of one or two research articles, 3) assessments of students’ 

mathematical thinking via clinical interviews, 4) teacher engagement with mathematics,  

and 5) design and implementation of student activities/lessons. For complete details and 

the scheduling of each session visit: (https://osf.io/tqs7e/) 

 Researcher-Led Presentation of Numerical Cognition Research. During the 

morning of each session, researchers Hawes, Merkley, and/or Ansari prepared and 

presented a brief presentation on the day’s given theme (e.g., numerical foundations). 

Examples of topics from numerical cognition research included research on the counting 

principles, dyscalculia, number line training studies, and arithmetic strategies (a more 

detailed description of the specific topics is addressed further below). Examples of topics 

on developmental cognitive (neuro)science included sharing and discussing research 

related to distributed/spaced practice effects, neuromyths, conceptual vs. procedural 

knowledge, brain plasticity, and effects of home and environment on early academic 

achievement. Moreover, discussing research in these various areas naturally led to sharing 
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and discussing various other terms frequently used in cognitive science research, 

including inhibitory control, executive functions, and working memory.  

The purpose of these presentations was to introduce and share research findings 

from the field of numerical cognition as well as developmental cognitive (neuro)science 

more generally. More specifically, by sharing, translating, and discussing research it was 

our intent to provide a springboard from which to focus our collective thinking and 

theorizing about children’s numerical thinking and the types of classroom activities that 

relate to such research findings. We saw these presentations as an opportunity to initiate a 

group discussion on whether and how research in numerical and cognitive science is or 

can be applied to the classroom. The central topic of these presentations (e.g., arithmetic 

strategies) also served as the focal point and unifying feature of all other aspects of the 

professional learning across each session.  

This specific component of the intervention was hypothesized to facilitate 

teachers’ understanding of research knowledge and terminology related to numerical 

cognition and, to a lesser degree, developmental cognitive neuroscience more generally. 

For this reason, we expected to see gains in teachers’ actual and self-perceived numerical 

cognition knowledge, as well as potentially increases in self-perceived general cognition 

terminology (see measures below).   

 Whole Group Discussion of Research Articles. In between sessions, group 

members were expected to read one or two research articles related to the session’s main 

topic. Table 4.2 provides a list of the articles read and discussed. Group members 

prepared questions based on the reading(s), providing a catalyst for the group discussion 

of the readings. This component of the intervention served the same purpose of the 

researcher-led research presentation. It was our intention that reading and discussing 

research in numerical cognition would help familiarize group members with key concepts 

and terminology from the field of numerical cognition. We also viewed this component as 

an extension of the research presentations and an opportunity for group members to 

further consolidate and question their understanding of the targeted topics. This 

component was hypothesized to further facilitate teachers’ content knowledge in the area 

of numerical cognition as well as issues related to bridging the gap between research and 

practice.  
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 Assessments of Students’ Mathematical Thinking. As a follow-up to research on 

children’s numerical thinking, as well as means to bridge between research and practice, 

we carried out brief assessments of children’s mathematical thinking (i.e., clinical 

interviews). These assessments were based on established measures within the numerical 

cognition literature and targeted the session’s given focus. During our session on the 

foundations of numerical thinking, team members were provided with a copy of Okamoto 

and Case’s Number Knowledge Test (1996) and administered the assessment with a 

minimum of three of their own students. During the session where we investigated 

numerical-spatial associations, teachers were introduced to the number line task (i.e., a 

task involving the placement of a given number on a horizontal line marked with bounded 

end points, e.g., 0 and 100). During the sessions on arithmetic, teachers were introduced 

to methods of observing and recording children’s arithmetic strategy use. With the 

exception of the Number Knowledge Test, which occurred in between sessions, the other 

assessments occurred as part of the professional learning. After introducing the group to a 

particular assessment (e.g., number line estimation task), teachers were asked to select 

three students from their classrooms that they were interested in assessing. Teachers then 

worked with their same-grade teacher partners to adapt the measure to their own needs 

and prepare a series of questions for the students they would be interviewing/assessing. 

Teachers then took turns sharing their questions with the whole group, offering a rationale 

for the creation of their questions as well as their predictions for how children would 

perform on the task. Teachers then went to their own classrooms and retrieved the 

student(s) they were interested in carrying out the assessment with and brought the 

student(s) to our common meeting place (i.e., the library). Teachers then conducted the 

interviews/assessments, typically with one student at a time, but sometimes with two or 

three children at once. Following the assessments, we would come back together as a 

group and take turns sharing our observations of student thinking. Teachers were also 

encouraged, whenever possible, to record their interviews and assessments with students 

and later upload them to our group’s shared Google Drive. Teachers were given 

opportunities to show a brief video clip of their students’ thinking and discuss it with the 

group.  
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  The primary purpose of this component of the intervention was to make students’ 

mathematical thinking visible, providing teachers with new insights into students’ 

mathematical thinking (Ginsburg, 1997). Relatedly, it was our hope that these 

observations/insights would help inform subsequent teacher planning and instruction in 

the given areas of focus. For these reasons, teachers were encouraged to carry out the 

assessments as clinical interviews as opposed to standard test administration. In other 

words, we encouraged teachers to focus less on test administration and more on what the 

child’s response to the question might reveal about their current mathematical 

understanding. We encouraged the group to ‘go off script’ and improvise new questions 

and extensions in direct response to the child’s responses.  

  By orienting attention towards student thinking (and what this might mean for 

instruction), we predicted that teacher-student interviews/assessments may confer a 

number of benefits. In line with previous research, we predicted that teacher-student 

interviews/assessments may enhance teachers’ mathematical content knowledge as well 

as pedagogical content knowledge (Ball, Thames, & Phelps, 2008; Clarke et al., 2011; 

Mast & Ginsburg, 2010; Moss et al., 2015). Moreover, the use of teacher-student 

interviews has also been associated with increased teacher confidence in teaching 

mathematics (Clarke et al., 2011). For these reasons, we had reason to believe that the 

inclusion of teacher-student assessments was an important potential agent of teacher 

change. 

Teacher Engagement with Mathematics. During each meeting, teachers engaged in 

a variety of mathematical activities related to each session’s targeted theme (e.g., number-

space associations). While some of these activities were specifically intended for adults, 

the majority of the activities were intended to be implemented in the teachers’ classrooms 

with their own students. In other words, with few exceptions, the activities that we asked 

teachers to engage in were the same as those that were to be implemented with students in 

the teachers’ own classrooms (for details on the student intervention implementation see 

the next section). This component of the intervention was designed to achieve several 

related aims. First, as a means of focusing attention on student thinking – a guiding 

principle of approach to PD. Teachers were asked to engage in the activities with the 

perspective of their students’ in mind (e.g., “How might you approach this task if you 
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were a student? If you were a 5-year-old what might you find difficult? What questions 

might you have?). A second purpose of having teachers engage in mathematics was to 

increase content knowledge and to further raise the group’s familiarity with the concepts 

discussed previously in the context of research. For example, by engaging in an activity 

targeting various arithmetic strategies (e.g., counting on from the largest of two addends), 

it was hoped that teachers would become better acquainted with concepts related to 

arithmetic strategies, and in turn, would be better able to recognize their students’ 

arithmetic strategies. A third purpose of doing mathematics as a group was an attempt to 

lower teacher’s mathematics anxiety. It is well documented that early years teachers 

demonstrate high levels of mathematics anxiety; that is, feelings of fear or apprehension 

of mathematics or the prospect of doing math (Maloney & Beilock, 2013). We 

intentionally selected activities that we thought would give teacher’s a new appreciation 

for mathematics and that they would be excited to share with their students. Moreover, by 

having teachers engage in mathematics through the mind of a child, we aimed to make it 

clear that we were not evaluating the teachers’ mathematical performance, but rather, we 

were interested in learning more about how children think about and learn mathematics.  

 To summarize, this component of the intervention was intended as a means to a) 

orient teachers’ attention towards students’ mathematical thinking, b) to increase 

mathematical content knowledge, and c) foster positive attitudes towards mathematics 

(i.e., lower levels of math anxiety). In addition, we anticipated that teachers would be 

more likely to implement the activities in their classrooms if they were more familiar with 

them and what they might expect from students.  

 Design and Implementation of Student Intervention. The last component of the 

teacher intervention centered around the implementation of classroom-based activities. 

Each session the research team presented the teacher team with a series of activities 

targeting the specific focus of each session (e.g., number-space associations). As noted 

above, these activities were first presented to and tried by the teacher team. Then, as a 

team, we discussed how the activities might be implemented, and if necessary, adapted, in 

the teachers’ own classrooms. To access the activities for each session visit: 

(https://osf.io/tqs7e/) 
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 The activities were referred to as Quick Challenge activities and, as the name 

suggests, were designed as brief activities (5-20 minute) that could easily be implemented 

and continually adapted over multiple iterations. That is, the Quick Challenge activities 

were not designed to be stand-alone lessons, but activities that could be used and 

continually adapted to meet the learning needs of children in different grades (K-3) and 

abilities. The selected activities were intended to build-up children’s numerical reasoning 

gradually and in accordance with the principle of distributed/spaced practice (Kang, 2016; 

Rohrer, 2015). In fact, we presented and discussed research on distributed/spaced practice 

as a means to first introduce the group to Quick Challenge activities and the rationale for 

their design and implementation.    

 On two different occasions, on the first and third session together, the first author 

modeled the implementation of two separate Quick Challenge activities for the group. 

Children from different teacher’s classrooms were brought to the library and participated 

in the activities in front of the group. This was done to model how the activities were 

intended to be implemented; that is, in a playful yet mathematically rigorous approach, 

using careful observation of student reasoning as a basis to adapt and expand the specific 

questions asked of students.   

 In terms of implementation, teachers were encouraged to try all of the shared 

activities as part of their regular mathematics instructional time. Teachers were provided 

with log sheets to record notes and the name and duration of the Quick Challenge 

activities implemented. During each meeting, with the exception of the first one, teachers 

shared the successes and challenges they faced with implementation.  

 We predicted that having students participate in these activities throughout the 

intervention would a) provide a context in which teachers could further observe the 

concepts discussed as part of the professional learning, and 2) provide opportunities for 

students’ to further strengthen their numerical reasoning. More specifically, given the 

content to the Quick Challenge activities, we expected to see the largest evidence of 

student gains in their basic numerical reasoning (number comparison and ordering), 

mental arithmetic, number-line estimation, and abilities to apply their numerical 

knowledge across a variety of number-based contexts.  
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Table 4.1      

Summary of main mathematical content addressed across each session.    

 

Table 4.2  

List of articles read and discussed as part of teacher professional learning intervention.   
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4.3.4     Pre- and Post-Test Measures 

 

4.3.4.1    Teacher Measures and Testing Procedure 

 

Math Anxiety. Teacher mathematics anxiety was measured using the short Mathematics 

Anxiety Rating Scale (sMARS; Alexander & Martray, 1989). The questionnaire includes 

25 items. For each item, participants are asked to indicate the degree to which a given 

math-related situation (e.g., receiving a math textbook, being given a set of subtraction 

problems to solve on paper) would make them feel anxious on a 5-point scale, from “not 

at all” to “very much.” Each teacher received a total score across all 25 items. To keep the 

total scores meaningful and within the 5-point rating scale, we divided each teacher’s 

total score by 25. Thus, each teacher was given a score out of 5, with lower score 

indicating lower math anxiety and higher scores indicating higher math anxiety. In Year 1, 

data were missing for 4 teachers in the intervention group and 2 teachers in the control 

group. Data were missing due to absenteeism on the day of testing (1 intervention: 1 

control) or incomplete surveys. In Year 2, data were missing for 3 teachers in the 

intervention group and 2 teachers in the control group. Data were missing due to 

absenteeism on the day of testing (2 intervention: 2 control) or incomplete surveys. 

 

Math Comfort Level. As an additional means of measuring teacher mathematics 

comfort/anxiety, teachers completed the Math for Young Children Survey (see Hawes et 

al., 2017). The survey includes 9 items in which teachers are asked to indicate their 

comfort level teaching and learning math on a 5-pont scale, from “not at all comfortable” 

to “very comfortable” (e.g., How are comfortable are you teaching math? How 

comfortable are you as a math learner?). Each teacher received a total score across all 9 

items. To keep the total scores meaningful and within the 5-point rating scale, we divided 

each teacher’s total score by 9. Thus, each teacher was given a score out of 5, with lower 

scores indicating lower comfort levels with math and higher scores indicating higher 

levels of comfort with math. In Year 1, data were missing for 4 teachers in the 

intervention group and 2 teachers in the control group. Data were missing due to 

absenteeism on the day of testing (1 intervention:1 control) or incomplete surveys. In 
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Year 2, data were missing for 3 teachers in the intervention group and 3 teachers in the 

control group. Data were missing due to absenteeism on the day of testing (2 intervention: 

2 control) or incomplete surveys. 

 

Numerical Cognition Test. This test was specifically designed for the purposes of this 

study. The test includes 12 multiple choice questions on key topics and concepts 

discussed within the numerical cognition literature and addressed within the current 

intervention. For example, the measure assesses knowledge of concepts and terms related 

to arithmetic strategies, numerical distance effects, the ‘mental number line,’ the counting 

principles, and dyscalculia. See Appendix A for a copy of the test. One point was awarded 

for each correct response on the test and teachers were given a total score out of 12. In 

Year 1, data were missing for 1 teacher in the intervention group and 1 teacher in the 

control group. Data were missing due to absenteeism on the day of testing (1 control) or 

incomplete surveys. In Year 2, data were missing for 3 teachers in the intervention group 

and 3 teachers in the control group. Data were missing due to absenteeism on the day of 

testing (2 intervention: 2 control) or incomplete surveys. 

 

Self-Perceived Numerical Cognition Knowledge. This measure consisted of 5 items from 

the Mind, Brain, and Education Questionnaire (Goffin, Sokolowski, Matejko, Bugden, 

Lyons, & Ansari, 2018). Participants were presented with terms related to numerical 

cognition, such as dyscalculia, cardinality, mental number line, and asked to indicate their 

level of knowledge on a 6-point scale: ““None” means you have never heard of the term 

and “Excellent” mean you could explain the term to a peer.” Each teacher received a 

total score out of 30. To keep the total scores meaningful and within the 6-point rating 

scale, we divided each teacher’s total score by 5. Thus, each teacher was given a total 

score of 6 to indicate their self-perceived numerical cognition knowledge, with lower 

scores indicating lower self-perceived knowledge and higher scores indicating higher 

self-perceived knowledge. In Year 1, data were missing for 1 teacher in the control group 

due to an incomplete survey. In Year 2, data were missing for 2 teachers in the 

intervention group and 3 teachers in the control group. Data were missing due to 

absenteeism on the day of testing (2 intervention: 2 control) or incomplete surveys. 
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Self-Perceived General Cognition Knowledge. This measure consisted of the remaining 9 

items from a subsection of the Mind, Brain, Education Questionnaire noted above. 

Participants were presented with terms related to cognitive science research more broadly, 

including brain plasticity, working memory, dyslexia, executive functions, and the 

scientific method.  The same 6-point scale and scoring procedures described above were 

used. Thus, each teacher was given a total score of 6 to indicate their self-perceived 

general cognition knowledge, with lower scores indicating lower self-perceived 

knowledge and higher scores indicating higher self-perceived knowledge. In Year 1, data 

were missing for 1 teacher in the control group due to an incomplete survey. In Year 2, 

data were missing for 2 teachers in the intervention group and 3 teachers in the control 

group. Data were missing due to absenteeism on the day of testing (2 intervention: 2 

control) or incomplete surveys. 

 

4.3.4.2    Child Measures and Testing Procedure 

 

Participating children completed 13 measures over two approximately 30 minutes testing 

sessions (1-5 days a part) 2-3 weeks prior to the intervention and within a 2-week period 

following the intervention. With the exception of the Mental Arithmetic measure, which 

was designed specifically for this study, all measures were selected from published 

research. Participants completed the measures in pseudo-random due to the blocked 

nature of some of the tests. Symbolic Number Comparison, Non-symbolic Number 

Comparison, and Ordering were administered to children in this order. Children also 

always completed the Path Span Forward prior to Path Span Reverse and Numeration 

prior to Geometry. All testing occurred in a quiet location of the school (i.e., empty 

classrooms or private testing rooms) and was administered one-to-one by trained 

experimenters.  

 

4.3.4.2.1    Measures of Numerical and Mathematical 

  Reasoning 
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The following three measures were adopted from Lyons, Bugden, De Jesus, and Ansari 

(2018) and Lyons, Hutchison, Bugden, Goffin, and Ansari (2018) and part of the same 

paper-and-pencil measure. As noted above, the three separate measures were presented in 

fixed order. Both the symbolic and nonsymbolic number comparison tasks consisted of 72 

items and the ordering task included 48 items. Children were provided with 1 minute to 

complete as many items as possible. For all three measures, the same scoring procedures 

were used. To adjust for potential speed-accuracy trade-offs/guessing behavior, adjusted 

raw scores were computed by subtracting the total number of incorrect items from the 

total number of correct items (see Lyons, Bugden, et al., 2018; Lyons, Hutchison, et al., 

2018).  

 

Symbolic Number Comparison. Children were presented with pairs of Hindu-Arabic 

numerals (e.g., 2 | 5) and asked to indicate the larger number as quickly and accurately as 

possible. Comparisons were confined to single-digit numerals (1-9) and the absolute 

distances between numerals ranged from 1 to 3. Trials were counterbalanced so that the 

larger number appeared an equal number of times on the left side of the page as the right.  

 

Nonsymbolic number comparison. Children were presented with pairs of dot arrays (e.g., : 

| ::) and asked to indicate the array with the most dots as quickly and accurately as 

possible. Dot arrays ranged from 1 to 9 dots and included the same numerical distances as 

those used in the symbolic number comparison task. Children were instructed not to count 

the dots. To control for the influence of the continuous properties of the dot stimuli on 

performance, both the area and contour length were manipulated and controlled for across 

trials. On half the trials, dot area was positively correlated with numerosity and overall 

contour length was negatively correlated. The reverse was true on the other half of the 

trials. In Year 2, data were incomplete/missing for 2 students (1 intervention: 1 control).  

 

Ordering Task. Children were presented with a sequence of numerals (e.g., 1 – 2 – 3) and 

asked to indicate whether or not the sequence was in numerical order. Numerals ranged 

from 1 to 9 and included absolute numerical distances of 1 (e.g., 1 – 2 – 3) or 2 (e.g., 1 – 
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3 – 5). There were an equal number of correct and incorrect sequences of distances 1 and 

2. For half of the items, the sequences were in the correct ‘ascending order’ and for the 

other half, the sequences were in incorrect order. In Year 2, data were incomplete/missing 

for 1 student in the control group. 

 

Mental Arithmetic. Children were orally administered 12 addition problems of increasing 

difficulty. The first 4 problems were considered ‘easy’ and involved solutions with sums 

of 5 or less. The next 4 problems were considered ‘medium’ difficulty and involved 

solutions between 6 and 10. The last 4 problems were considered ‘difficult’ and involved 

solutions between 11 and 15. Questions were counterbalanced so that on half of the 

questions the smaller addend was presented first (e.g., 1 + 2) and on the other half the 

larger addend was presented first (e.g., 2 + 1). All questions were solved without paper-

and-pencil or concrete materials. Children were awarded 1 point for each correct response 

and given a total score out of 12. In Year 1, data were incomplete/missing for 1 student in 

the control group. In Year 2, data were incomplete/missing for 1 student in each group.  

 

Number Line Estimation. This measure was administered on an iPad (to access the 

application see: https://hume.ca/ix/estimationline.html). Children were presented with a 

horizontal line marked with “0” at the far left end of the line and either “10” or “100” at 

the far right end of the line. Kindergarten children were administered the 0-10 number 

line and children in grades 1-3 were administered the 0-100 number line. The goal of the 

task was to indicate where on the line a given target number belongs (e.g., “Where does 

the number six belong on the line?”). To familiarize children with the task, children were 

first presented with a practice trial: For kindergarten children, the practice trial involved 

the placement of “5” and for children in grades 1-3 the practice trial involved the 

placement of “50.”  The test trials for kindergarten children included numbers 1-9 (with 

the exception of 5). For children in Grades 1-3, test trials included the following target 

numbers adopted from Laski and Siegler (2007):  2, 3, 5, 8, 12, 17, 21, 26, 34, 39, 42, 46, 

54, 58, 61, 67, 73, 78, 82, 89, 92, and 97. All trials were randomly presented to children. 

The accuracy of each trial was recorded by the computer. We then used this information 
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to calculate each child’s overall accuracy across all estimates. To do this, we calculated 

each child’s percent absolute error (PAE) using the following formula: 

 

 

 

To put this into context, if a child was asked to estimate the location of 3 on the 0-10 

number line and placed his/her response at the location that corresponded to 5, the percent 

absolute error (PAE) would be 20%: [(5 – 3)/10] x 100. A lower PAE is associated with 

greater accuracy (less error). In Year 1, data were incomplete/missing for 6 students (4 

intervention: 2 control). In Year 2, data were incomplete/missing for 4 students (3 

intervention: 1 control).  

 

Numeration Test. Children’s overall numeracy performance was assessed with the 

Numeration subtest from KeyMath (Connolly, 2007); a standardized Canadian normed 

test designed for students in kindergarten to 12th grade. This test provides a 

comprehensive and curriculum-aligned assessment of children’s numeration skills, 

including knowledge and concepts related to counting, comparing quantities, recognizing 

and ordering number symbols, operations, place value, and 

proportions/fractions/decimals. The test is administered with an easel booklet and each 

problem refers to information presented in the form of an image and/or writing. The test 

is adaptive in that it begins by establishing baseline performance and continues with 

questions of increasing difficulty. The test is discontinued when the child answers four 

questions incorrectly in a row. Thus, children are presented with problems that vary from 

the familiar to the unfamiliar/novel. The test includes 49 items in total.  Children were 

given a total raw score by subtracting the total number of incorrect responses from the 

maximum item number reached. In Year 1, data were incomplete/missing for 1 student 

(control). In Year 2, data were incomplete/missing for 1 student (control). 
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Geometry Test. To assess children’s geometry performance, we used the Geometry subtest 

from the KeyMath assessment described above (Connolly, 2007). This test proves a 

comprehensive and curriculum-aligned assessment of children’s geometry skills, 

including knowledge and concepts related to shape recognition, positional language, 

geometrical transformations (e.g., rotations), measurement, grid coordinates, angles, 

geometric proofs. The same scoring procedures described above were used for this 

measure. The test included a total of 36 items. In Year 1, data were incomplete/missing 

for 3 students (2 intervention: 1 control). In Year 2, data were incomplete/missing for 4 

students (2 intervention: 2 control). 

 

4.3.4.2.2    Measures of Spatial Ability 

 

2D Mental Rotation. Children’s mental rotation was measured with an adapted version of 

the Children’s Mental Transformation Task (Levine, Huttenlocher, Taylor, & Langrock, 

1999); a widely used measure of children’s mental rotation skills (e.g., see Ehrlich, 

Levine, & Goldin- Meadow, 2006; Hawes, LeFevre, Xu, & Bruce, 2015). In this task, 

children are presented with two halves of 2D shape (printed on cardstock), which have 

been separated and rotated 60° from one another on either the same plane (direct rotation 

items) or diagonal plane (diagonal rotation items). Children are then asked to identify 

which shape (amongst four options) can be made by putting two halves together; a 

process that presumably relies on the ability to mentally rotate the puzzle pieces and 

visualize the correct solution. There were 16 items and children were awarded one point 

for each correct response. In Year 1, data were incomplete/missing for 1 student (control). 

In Year 2, data were incomplete/missing for 3 students (1 intervention: 2 control). 

 

Visual-Spatial Reasoning. This measure was adopted from Hawes, Moss, Caswell, Naqvi, 

and MacKinnon (2017) and provides a comprehensive measure of children’s spatial 

visualization skills. The test consists of 20 items divided into four different problem 

types: missing puzzle pieces (two variations), composition/decomposition of 2D shapes, 

and mental paper folding. For each problem, children were asked to identify the correct 

answer among four options. One point was awarded for each correct response. In Year 1, 
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data were incomplete/missing for 1 student (control). In Year 2, data were 

incomplete/missing for 2 students (1 intervention: 1 control). 

 

Raven’s Coloured Progressive Matrices. This is a widely used measure of children’s 

visual-spatial analogical reasoning (Raven, 2008). Children are presented with partially 

completed visual-spatial patterns and must select from amongst six alternatives the puzzle 

piece that will complete the pattern. The test consists of 36 items. One point was awarded 

for each correct response. In Year 1, data were incomplete/missing for 1 student (control). 

In Year 2, data were incomplete/missing for 2 students (1 intervention: 1 control). 

 

4.3.4.2.3    Measures of Executive Functioning 

 

Head-Toes-Knees-Shoulders task (HTKS). This measure was adapted from Ponitz et al. 

(2009) and was designed to measure children’s ability to engage in flexible attention, 

working memory, and inhibitory control (McClelland & Cameron, 2012). For each item, 

children listen to an instruction to touch a body part (e.g., “Touch your toes”) and then 

must touch a paired “opposite” body part (e.g., head). The task uses ‘head’ and ‘toes’ as 

one pairing and ‘knees’ and ‘shoulders’ as the other pairing. There are 20 items in total. 

For each item, children were given a score of 0, 1, or 2; a score of 0 corresponded to 

incorrect body movements (touching one’s head when asked to touch their head), a score 

of 1 corresponded to a self-corrected body movements (initiating movement towards the 

wrong body part and then making a correction), and a score of 2 corresponded to correct 

body movements (touching one’s toes when asked to touch their head). Children were 

given a total score out of 40. In Year 1, data were incomplete/missing for 1 student 

(control). In Year 2, data were incomplete/missing for 3 students (2 intervention: 1 

control). 

 

Visual-Spatial Working Memory - Forward Path Span.  This measure was administered 

on an iPad and was used as a measure of children’s visual-spatial working memory (to 

access the application see: https://hume.ca/ix/pathspan.html). Children were presented 

with a set of nine green circles randomly arranged on the screen and watched as the 
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circles lit up one at time. Children were then instructed to recall the sequence in the same 

order in which they were presented. After a practice trial, children were first presented 

with two trials at a sequence length of two. Upon successful recall of one or both of the 

sequences, the child progressed to the next level (i.e., two trials with sequence lengths of 

three). The task was discontinued when the child failed to recall both sequences at any 

given level. Children were assigned a score based on the total number of correct 

sequences recalled. In Year 1, data were incomplete/missing for 7 students (4 

intervention: 3 control). In Year 2, data were incomplete/missing for 3 students (2 

intervention: 1 control). 

 

Visual-Spatial Working Memory - Reverse Path Span. This task was identical to the one 

above but required children to recall the given sequence in reverse order. In Year 1, data 

were incomplete/missing for 7 students (4 intervention: 3 control). In Year 2, data were 

incomplete/missing for 4 students (2 intervention: 2 control). 

 

4.3.5    Measurement of Time Spent Implementing Teacher-

Led Student Intervention Activities 

 

Teachers in the intervention groups were provided with tracking sheets where they 

recorded the date, duration, name of activity, and a brief description/notable observations 

of the implementation of all activities conducted. It is worth noting that in each 

participating school (including the control group), teachers of grades 1-3 reported 

adhering to the Ontario Ministry of Education policy of teaching mathematics for 60 

minutes per day. More specifically, in each school, the class schedule was structured to 

ensure one 60-minute block of mathematics per day. While there is no mandate or 

guidelines for how much time should be devoted to mathematics instruction in 

Kindergarten, all participating schools reported between 30-45 minutes of mathematics 

instruction per day. Thus, we can be fairly certain that the participating schools engaged 

in equivalent amounts of mathematics instruction. This information is useful in helping to 

rule out explanations that any potential changes in mathematics of one group over another 

was due more time spent in mathematics. 
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 As noted above, teachers were also encouraged to contribute to the group’s shared 

Google Drive. Specially, teachers were encouraged to upload any videos of teacher-led 

assessments, pictures/videos of student work based on the teacher-led student activities, 

and any adapted versions of the activities tried by teachers in their own classrooms. Both 

intervention groups were provided with a total score based on the number of unique items 

uploaded. We then used this score as an exploratory means of measuring and comparing 

the intervention groups’ engagement and/or commitment to the project.  

 

4.3.6    Analytical Approach 

 

Analyses were based on the analytical approaches outlined in the pre-registration of the 

Year 1 (https://osf.io/efyqy/register/5771ca429ad5a1020de2872e) and Year 2 studies 

(https://osf.io/kpr9g/). Data were analyzed using Bayesian statistics and conducted with 

JASP (Version 0.9.0.1). Findings from both the preliminary and main analyses are 

reported using Bayes factors: A statistic that provides a means of directly comparing and 

evaluating the strength of evidence for one statistical model (e.g., there is a group 

difference) over another (e.g., there is no group difference). One of the benefits of using 

Bayes factors is that they provide a means to quantify the amount of support both for and 

against the alternative hypothesis over the null. Moreover, Bayes factors can be used to 

indicate when there is insufficient evidence in support of the alternative hypothesis or the 

null. Knowing whether there is support for the null and/or whether more data are needed 

before claiming support for the null (i.e., “there is no effect”) is especially important 

when analyzing and reporting intervention-based research. Another advantage of using 

Bayesian statistics, compared to traditional frequentist statistics, is that smaller sample 

sizes are needed to reach conclusions about the presence of a given effect, while having 

the same or lower long-term error rate (Schönbrodt, Wagenmakers, Zehetleitner, & 

Perugini, 2017). Given the small sample size of teacher participants in the present study, 

Bayesian analyzes were ideally suited for this purpose.     

For all preliminary analyses, we report on Bayes factors as they correspond to 

evidence in favor of the alternative hypothesis (i.e., that there are differences between 

groups at pre-test) compared to the null hypothesis (i.e., there are no differences between 
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groups at pre-test). For these analyses, the symbol BF10  is used to signify the strength of 

evidence for the alternative hypothesis (H1) over the null (H0). As detailed further below, 

we considered Bayes factors of 3 and above as evidence for the alternative (i.e., the 

presence of group differences at pre).  

 To address our main questions of whether or not the intervention had any positive 

effects on both teacher and student outcomes, we used mixed-design Bayesian repeated 

measures ANOVA. In both Studies 1 and 2, we analyzed the extent to which teacher and 

student change from pre- to post-test was dependent on group assignment (i.e., 

experimental vs. control). In addition, in Experiment 2 we also evaluated the effects of the 

intervention by carrying out within-group Bayesian repeated measures ANOVAs. In all 

cases, we report on the Bayes factors from a model with the interaction term (group x 

time) from models without the interaction term. More specifically, we report on the 

statistic referred to as Bayes factor inclusion (hereafter BFincl). The BFincl provides a 

means to quantify the amount by which the prior odds of including an effect term in the 

model (in this case a group x time interaction) is updated after observing the data. For 

example, a BFincl of 5 indicates that the observed data have increased the odds of an 

interaction by a factor of 5. Said differently, a model which includes the interaction term 

is 5 times more likely than all other models of the data that do not contain an interaction.   

Given that Bayes factors are open to subjective interpretation (e.g., should an 

effect that is 5 times more likely than the null be considered as strong evidence? Is that 

convincing enough?), the following guidelines for interpreting the strength of Bayes 

factors have been recommended (e.g., see Jarosz & Wiley, 2014):  Bayes factors between 

1 and 3 = weak/anecdotal support (not enough evidence to make any substantial claims 

either for or against the predicted relationship); Bayes factors between 3 and 10 = 

substantial support (enough evidence to make moderate claims about effect); Bayes 

factors between 10-100 = strong evidence (enough evidence to be make moderate/strong 

claims about effect); Bayes factors greater than 100 = very strong/decisive evidence 

(enough evidence to make strong claims about effect). As mentioned above, in the present 

study, we report on the Bayes factors associated with a model that includes an interaction 

compared to all other models that do not include the interaction term.  In cases where the 

reported Bayes factors are below 1, this is an indication that there is more support for a 
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model that does not include an interaction factor. In cases for the Bayes factor is 3 or 

above, this is considered evidence in support of an interaction. In short, the higher the 

Bayes factor, the higher the odds of there being a group difference from pre-to-post.  

Note that for all analyses we used the default settings in JASP for repeated 

measure ANOVA (Version 0.9.0.1). These settings include an r scale for fixed effects of .5 

(i.e., h = .5). We used the default prior because we had no prior information about which 

size effects to expect. Moreover, the default prior contains a reasonable range of data 

coverage without being committed to any one point (Rouder, Morey, Verhagen, 

Swagman, & Wagenmakers, 2017).  

  

4.4    Results 

   

4.4.1   Year 1 – Teacher Results 

 

4.4.1.1   Preliminary Analyses  

 

To assess the presence of any group differences at pre-test on any of the measures, a 

series of Bayesian independent samples t-tests were conducted (see Table 4.3 for a 

comparison of mean scores by each group and across both time points). Note that for 

these analyses we excluded the pre-test data available from the school principal in the 

intervention group. We did this because we were unable to collect her post-test data and 

we also did not have any pre- or post-test data from the school principal in the control 

group. Results revealed no evidence of group differences on any of the five pre-test 

measures: Math Comfort Level (16), BF10 = 0.48; Math Anxiety (16), BF10 = 0.72; 

Numerical Cognition Knowledge (20), BF10 = 0.59; Self-Perceived Numerical Cognition 

Knowledge (21), BF10 = 0.41; Self-Perceived General Cognition Knowledge (21), BF10 = 

0.40. Note that the numbers in brackets refer to the degrees of freedom for each particular 

t-test conducted. These findings suggest that the groups were well-matched on all 

measures of interest.  
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Table 4.3  

Mean scores and standard deviations by teacher group at pre- and post-test (Year 1) 

 

4.4.1.2   Main Analyses  

Bayesian repeated measures ANOVA were used to analyze the extent to which the 

intervention and control groups changed in relation to one another from pre- to post-test 

(see Table 4.3; Figure 4.2). More specifically, we conducted a group (intervention vs. 

control) by time (pre vs post) analysis for each dependent variable. On both the Math 

Comfort Level and Math Anxiety surveys there was evidence in favor of the null (i.e., 

support against a model that includes a time x group interaction); Math Comfort Level 

(16), BFincl = 0.25; Math Anxiety (16), BFincl = 0.19; Support for the presence of a group 

by time interaction in favor of the intervention group was observed on three of the 

measures: Numerical Cognition Knowledge (20), BFincl = 9.24; Self-Perceived Numerical 

Cognition Knowledge (21), BFincl = 7.47; Self-Perceived General Cognition Knowledge 

(21), BFincl  = 11.64. Figure 4.2 displays each educator’s individual scores on each 

measure and across each time point. Overall, our analyses indicated that the intervention 

group demonstrated greater improvements than the control group on a test of Numerical 

Cognition and questionnaires examining Self-Perceived Numerical Cognition Knowledge 

and Self-Perceived General Cognition Knowledge. 
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Figure 4.2    Comparison of pre-post performance by teachers in the intervention and 

control group (Year 1). Each circle and the lines that connect them represents the pre-post 

scores for an individual teacher.  

 

4.4.2   Year 1 – Student Results 

 

4.4.2.1   Preliminary Analyses  

 

Table 4.4 shows the mean scores and standard deviations by group at pre and post. To 

assess the presence of any group differences at pre-test on any of the measures (as well as 

age), a series of Bayesian independent samples t-tests were conducted. As preregistered, 

group differences were determined by Bayes factors greater than three. Based on this 

criteria, no group differences were observed on any of the measures: Age(105), BF10 = 

0.40; Numeration(105), BF10 = 0.27; Geometry(104), BF10 = 0.22; Non-Symbolic 

Number Comparison(105), BF10 = 2.015; Symbolic Number Comparison(105), BF10 = 
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0.52; Ordering(105), BF10 = 1.36; Arithmetic(105), BF10 = 0.25; Number Line(PAE)(99), 

BF10 = 0.42; Visual-Spatial Working Memory – Forward Path Span(100), BF10 = 0.24; 

Visual-Spatial Working Memory – Reverse Path Span(100), BF10 = 0.25; Head-Toes-

Knees-Shoulders (105), BF10 = 0.21; Raven’s Matrices(105), BF10 = 0.27; 2D Mental 

Rotation(105), BF10 = 0.24; Visual-Spatial Reasoning(105), BF10 = 0.30. Note that the 

numbers in brackets refer to the degrees of freedom for each particular t-test conducted. 

These findings suggest that the groups were well-matched in terms of age and 

performance at pre-test. 
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4.4.2.2   Main Analyses 

Bayesian repeated measures ANOVA were used to analyze the extent to which the 

intervention and control groups changed in relation to one another from pre- to post-test 

(see Table 4.4; Figure 4.3). More specifically, we conducted a group (intervention vs. 

control) by time (pre vs post) analysis for each dependent variable. Bayes factors for the 

inclusion of the interaction term (group x time) were used to determine the strength of the 

intervention. As noted above, our minimum a priori criteria for evidence of positive 

intervention effects was associated with a Bayes factor of 3. Based on this criteria, our 

analyses indicated evidence of pre-post gains by the intervention group compared to the 

control group on three measures: Numeration(104), BFincl = 9.65; Arithmetic(104), BFincl 

= 8.50; Number Line(PAE)(97), BFincl = 4.53. There was evidence of pre-post gains in 

favor of the control group on the Non-Symbolic Number task (105), BFincl = 28.40. There 

was no evidence of group differences from pre-to-post on any of the other measures: 

Geometry(102), BFincl = 0.06; Symbolic Number Comparison(105), BFincl = 0.44; 

Ordering(105), BFincl = 0.07; Visual-Spatial Working Memory – Forward Path Span(98), 

BFincl = 0.22; Visual-Spatial Working Memory – Reverse Path Span(98), BFincl = 0.31; 

Head-Toes-Knees-Shoulders (104), BFincl = 0.21; Raven’s Matrices(104), BFincl = 0.34; 

2D Mental Rotation(104), BFincl = 0.23; Visual-Spatial Reasoning(104), BFincl = 0.23. 

Figure 4.3 shows all children’s pre-post scores by group and across all the mathematics 

measures (see Supplementary Figure 1 for pre-post scores by group for performance on 

the spatial and EF measures; https://osf.io/tqs7e/files/). 
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Figure 4.3   Comparison of pre-post performance by students in the intervention and 

control group (Year 1). 

 

4.4.3   Summary of Year 1 Results 

 

Teachers in the intervention group demonstrated greater gains than the control group on 

measures of numerical cognition knowledge, self-perceived numerical cognition 

knowledge, and self-perceived general cognition knowledge. There was support in favor 

of an absence of gains (i.e., support for the null) on measures of math anxiety and comfort 

in the teaching and learning of mathematics. Children in the intervention classrooms 

demonstrated greater gains compared to the control group on measures of number line 

estimation, mental arithmetic (addition), and overall numeration performance. Both 

groups of children made highly similar gains on measures of spatial and EF skills, which 

were not targeted during PD. Thus, the gains made by the intervention group were highly 

specific to content and activities covered as part of the teacher PD.  

 

4.4.4   Year 2 – Teacher Results  
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4.4.4.1   Preliminary Analyses  

 

To assess the presence of any group differences at pre-test on any of the measures, a 

series of Bayesian independent samples t-tests were conducted (see Table 4.5). Results 

revealed no evidence of group differences on any of the five pre-test measures: Math 

Comfort Level (19), BF10 = 0.62; Math Anxiety (20), BF10 = 0.44; Numerical Cognition 

Knowledge (20), BF10 = 0.39; Self-Perceived Numerical Cognition Knowledge (20), BF10 

= 0.45; Self-Perceived General Cognition Knowledge (20), BF10 = 0.41. Note that the 

numbers in brackets refer to the degrees of freedom for each particular t-test conducted. 

These findings suggest that the groups were well-matched on all measures of interest.  

 

Table 4.5  

 

Mean scores and standard deviations by teacher group at pre- and post-test (Year 2) 

 

4.4.4.2   Main Analyses 

Bayesian repeated measures ANOVA were used to analyze the extent to which the 

intervention and control groups changed in relation to one another from pre- to post-test 

(see Table 4.5; Figure 4.4). On both the Math Comfort Level and Math Anxiety surveys 

there was evidence in favor of the null (i.e., support against models that included the time 

x group interaction); Math Comfort Level (19), BFincl = 0.21; Math Anxiety (20), BFincl = 

0.23. Support for the presence of a group by time interaction in favor of the intervention 

group was observed on the measure of Self-Perceived Numerical Cognition Knowledge 

(20), BFincl = 9.23. There was insufficient evidence for or against a group x time 

interaction on the remaining two measures:  Numerical Cognition Knowledge (20), BFincl 
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= 0.76; Self-Perceived General Cognition Knowledge (20), BFincl = 1.97. Figure 4.4 

displays each educator’s individual scores on each measure and across each time point. 

Overall, our analyses indicated that the intervention group demonstrated greater 

improvements than the control group on the measure of Self-Perceived Numerical 

Cognition Knowledge. 

 

Figure 4.4   Comparison of pre-post performance by teachers in the intervention and 

control group (Year 2). Each circle and the lines that connect them represents the pre-post 

scores for an individual teacher. 

 

4.4.5   Year 2 – Student Results 

 

4.4.5.1   Preliminary Analyses  
 

Table 4.6 shows the mean scores and standard deviations by group at pre and post. To 

assess the presence of any group differences at pre-test on any of the measures (as well as 
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age), a series of Bayesian independent samples t-tests were conducted. No group 

differences were observed on any of the measures: Age(119), BF10 = 0.35; 

Numeration(119), BF10 = 0.22; Geometry(118), BF10 = 0.20; Non-Symbolic Number 

Comparison(119), BF10 = 0.22; Symbolic Number Comparison(119), BF10 = 0.21; 

Ordering(118), BF10 = 0.20; Arithmetic(119), BF10 = 0.31; Number Line(PAE)(118), BF10 

= 0.20; Visual-Spatial Working Memory – Forward Path Span(118), BF10 = 0.20; Visual-

Spatial Working Memory – Reverse Path Span(117), BF10 = 0.22; Head-Toes-Knees-

Shoulders (119), BF10 = 0.25; Raven’s Matrices(119), BF10 = 0.20; 2D Mental 

Rotation(119), BF10 = 0.19; Visual-Spatial Reasoning(119), BF10 = 0.21. Note that the 

numbers in brackets refer to the degrees of freedom for each particular t-test conducted. 

That there were no differences between groups on any of the measures suggests that the 

groups were well-matched in age and performance.  
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4.4.5.2   Main Analyses   

 

Bayesian repeated measures ANOVA were used to analyze the extent to which the 

intervention and control groups changed in relation to one another from pre- to post-test 

(see Table 4.6; Figure 4.5). We found no evidence of pre-post gains by the intervention 

group compared to the control group on any of the measures: Numeration(118), BFincl = 

0.48; Geometry(115), BFincl = 0.18; Non-Symbolic Number Comparison(117), BFincl = 

0.30; Symbolic Number Comparison(119), BFincl = 0.33; Ordering(118), BFincl = 0.14; 

Arithmetic(117), BFincl = 0.27; Number Line(PAE)(115), BFincl = 0.16; Visual-Spatial 

Working Memory – Forward Path Span(116), BFincl = 0.22; Visual-Spatial Working 

Memory – Reverse Path Span(115), BFincl = 0.03; Head-Toes-Knees-Shoulders (116), 

BFincl = 0.41; Raven’s Matrices(117), BFincl = 0.39; 2D Mental Rotation(116), BFincl = 

0.14; Visual-Spatial Reasoning(117), BFincl = 1.35. Figure 4.5 shows all children’s pre-

post scores by group and across all the mathematics measures (see Supplementary Figure 

2 for pre-post scores by group for performance on the spatial and EF measures; 

https://osf.io/tqs7e/files/).  

 As a follow-up to the above analysis, we also carried out a series of within-group 

Bayesian repeated measures ANOVAs. Because the intervention group had previously 

participated as the control group, we were able to test for differences in their growth 

across the two conditions (control vs. intervention; see Table 4.7). As outlined in our pre-

registration, we considered this analysis as a more robust and reliable measure of the 

effectiveness of the intervention. These analyses revealed three condition x time 

interactions with a Bayes factor greater than three. Children demonstrated greater gains 

on the Numeration test when part of the intervention condition compared to the control 

condition (i.e., business as usual); Numeration(46), BFincl = 9.42. Unexpectedly, children 

demonstrated greater gains on the Non-Symbolic Number Comparison task and HTKS 

task when part of the control group compared to the intervention group; Non-Symbolic 

Number Comparison(47), BFincl = 7.30; Head-Toes-Knees-Shoulders (45), BFincl = 4.21. 

On all of the remaining measures, there was no evidence of greater gains when children 

were members of the intervention compared to the control condition: Geometry(43), 

BFincl = 0.35; Symbolic Number Comparison(47), BFincl = 0.78; Ordering(47), BFincl = 
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0.56; Arithmetic(47), BFincl = 0.34; Number Line(PAE)(43), BFincl = 0.70; Visual-Spatial 

Working Memory – Forward Path Span(43), BFincl = 0.75; Visual-Spatial Working 

Memory – Reverse Path Span(43), BFincl = 0.39; Raven’s Matrices(45), BFincl = 0.87; 2D 

Mental Rotation(45), BFincl = 2.10; Visual-Spatial Reasoning(45), BFincl = 0.24. Figure 

4.6 shows children’s gain scores across all four time points and under both conditions 

(intervention vs. control) for all the mathematics measures (see Table 4.7 and 

Supplementary Figure 4.3 for gains scores by time and condition on the remaining spatial 

and EF measures; https://osf.io/tqs7e/files/). 

 

 
 

Figure 4.5   Comparison of pre-post performance by students in the intervention and 

control group (Year 2). 
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Figure 4.6    Within group change across multiple time points and under both conditions. 

Bars represent 95% Confidence Intervals around the mean.  

 

4.4.6   Summary of Year 2 Results 

 

Relative to the control group, teachers in the intervention group demonstrated gains on 

the measure of self-perceived numerical cognition. Bayesian analyses indicated 

insufficient evidence to claim support for or against an effect on measures of numerical 

cognition knowledge and self-perceived general cognition knowledge. Thus, whether or 

not the intervention had an effect on these aspects of teacher knowledge remains 

ambiguous. Replicating the Year 1 results, there was support for the null on both the 

measure of math anxiety as well as comfort in the teaching and learning of mathematics. 

As per the student results, there was no evidence of gains by the intervention group 

compared to the control group on any of the measures. In fact, on the mathematics 

measures, except for numeration, there was support in favor of the null. The within-group 

analyses revealed a somewhat different picture, indicating greater improvements in 
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children’s numeration performance when they were participated in the intervention 

compared to the control condition. 

 

4.4.7   Implementation of Teacher-Led Student Intervention 

   Activities    

 

On average, the teachers in Year 1 engaged their students in the intervention activities for 

a total of nearly 12 hours (M=11.80, SD =  6.97, range =  3.67–22.42 hrs). In Year 2, 

teachers engaged their students in the intervention activities for an average of 

approximately 3 hours (M=3.37, SD =  1.46, range =  1.67–5.67 hrs). A Bayesian 

independent t-test was conducted to assess whether and to what extent the two groups 

varied in the total time spent implemented the student intervention activities. Results 

revealed B10 =  6.74, indicating a group difference in favor of the Year 1 teachers. Indeed, 

the Year 1 teachers engaged their students in the activities for approximately 3 and ½ 

times longer than the Year 2 teachers.  Also note that while all participating teachers in 

Year 1 returned their log sheets, one teacher in Year 2 failed to return theirs and another 

teacher’s log sheet was incomplete and unusable. It is clear that teachers in Year 1 

engaged their students in the intervention activities to a much greater extent than the 

teachers in Year 2.   

 There was also a clear difference between groups in the number of items uploaded 

to each group’s shared Google Drive. The Year 1 teachers uploaded 53 items compared to 

the 11 items uploaded by the Study 2 teachers. 
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4.5   Discussion  
 

In this study, we designed, implemented, and tested the effects of a novel approach to 

teacher PD. At its core, the model was designed to achieve two major objectives: 1) 

Enrich teachers’ awareness and understanding of research on children’s numerical 

thinking, and 2) use this knowledge to inform teachers’ assessment and implementation of 

a teacher-led classroom intervention. We predicted that this model would provide an 

effective means for improving both teacher and student learning in the area of early 

number. In an effort to provide a more stringent test of the model, we carried out a two-

year replication study. Year 1 results indicated that relative to a control group, teachers 

who participated in the PD intervention demonstrated gains in their numerical cognition 

knowledge, self-perceived numerical cognition knowledge, and self-perceived general 

cognition knowledge. Compared to a control group, children in the intervention 

classrooms demonstrated gains in number line estimation, mental arithmetic (addition), 

and a comprehensive test of numeration. Together, these results provide evidence to 

suggest that the intervention was effective at increasing both teacher and student 

knowledge in the areas most specifically targeted throughout the intervention. However, 

our attempt to replicate these effects (Year 2) paints a somewhat different picture. In Year 

2, teachers in the intervention group demonstrated greater improvements than the control 

group on a measure of self-perceived knowledge of numerical cognition. Thus, this result 

was consistent across both years. Unlike Year 1, however, we failed to replicate evidence 

of teacher gains in their actual content knowledge of numerical cognition. At the student 

level, there was no evidence that the intervention group outperformed the control group 

on any of the measures in Year 2. However, the within-group analyses revealed greater 

improvements in children’s numeration performance when they participated in the 

intervention compared to the control condition. This finding, coupled with the Year 1 

results, provides some evidence that the intervention may have had positive effective on 

children’s numeration performance. As discussed in greater detail below, one reason we 

may have obtained mostly discrepant results between years of study may have been due 

to group differences in teacher uptake and implementation of the intervention. For 

example, compared to the Year 2, the Year 1 teachers spent, on average, considerably 
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more time (3 x) implementing the student intervention, were more likely to identify with 

goals of the PD, and had the support of their school principal. Overall, although our 

findings are far from conclusive, a careful weighing of the evidence across years of study, 

suggest the current PD model is a viable approach to better integrate research and 

practice. In what follows is a more detailed summary and interpretation of the effects of 

the PD, as well as explanations for the inconsistencies in findings between years of study. 

We conclude our discussion by considering limitations and next steps.  

 

4.5.1   Teacher Results  
 

In both Year 1 and Year 2, teachers in the intervention reported higher-levels of perceived 

numerical cognition knowledge compared to the control group. More specifically, at the 

end of the intervention, teachers who participated in the PD reported experiencing 

increased levels of knowledge on the following terms: numerical cognition, dyscalculia, 

mental number line, cardinality, and ordinality. Given that these terms were central to and 

used throughout the PD intervention, these findings were expected. As a follow-up to this 

measure, we also included an actual test of numerical cognition knowledge; a multiple 

choice test that was designed to assess the understanding of these and other terms in 

classroom-based contexts. For example, for one of the questions, teachers were asked to 

identify the name of the property associated with a scenario in which a child recognizes 

that 3 + 2 results in the same answer as 2 + 3 (i.e., the commutative property). To our 

surprise, improvements on this measure were present in Year 1 but not Year 2. Thus, 

although gains in self-perceived numerical cognition were consistent across years of 

study, improvements in actual numerical cognition knowledge was restricted to the Year 1 

group.  

 This finding lends itself to some interesting questions regarding the influence of 

teachers’ numerical cognition knowledge on student learning. If teachers’ numerical 

cognition knowledge is more related to student learning than self-perceived knowledge, 

then we should expect to see greater evidence of student gains in Year 1 than Year 2. 

Indeed, at first glance, this is what the results seem to suggest. As further discussed 

below, there was stronger evidence for improvements in numerical reasoning by students 
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in Year 1 compared to Year 2. This finding is consistent with prior research, in which 

teachers’ understanding of different facets of children’s numerical thinking (e.g., 

arithmetic strategies) has been associated with gains in students’ numerical thinking (e.g., 

see Carpenter et al., 1989; Fennema et al., 1996; Franke et al., 2001). However, upon 

closer reflection, it is clear that this trend in the current data needs to be interpreted with 

caution. Due to the small sample sizes and uneven distribution of students across grades, 

we were unable to directly address the question of whether teacher change was associated 

with student change and furthermore dissociable by group. Thus, statistically speaking, 

we were unable to state whether the gains in Year 1 were a result of greater gains in 

teachers’ numerical cognition knowledge in Year 1 compared to Year 2. Moreover, the 

Bayes factors associated with the Year 2 teacher gains on the numerical cognition 

knowledge test failed to provide evidence for or against the presence of an interaction 

effect. Taken together, the results provide some hints that teachers numerical cognition 

knowledge may be linked to student growth in numerical reasoning. However, due to the 

small sample sizes (at the teacher level) and ambiguous Year 2 teacher results, more 

research is needed to examine the effects of the intervention on teachers’ numerical 

cognition knowledge, and in turn, the effects that this knowledge has on student learning 

outcomes.  

 The absence of intervention effects on teachers’ math anxiety/comfort was far less 

ambiguous. Across both years of the study, on both a measure of teacher math anxiety and 

a separate measure of teacher comfort level teaching and learning math, there was support 

in favor of the null: that is, there was enough evidence to suggest that the intervention did 

not have an effect in these areas. These results run counter to our original predictions. 

Entering this study, we were cognizant of the widespread math anxiety amongst early 

years teachers (Maloney & Beilock, 2013) and the potential negative effects that such 

feelings might have on student learning (Beilock, Gunderson, Ramirez, & Levine, 2010). 

To combat teacher math anxiety, we had teachers engage in mathematical tasks in non-

threatening, playful contexts and within all teachers’ capabilities. Moreover, in 

preparation for implementation with their students, we had teachers engage in these 

various math activities through the mind/perspective of their students. Although previous 

research suggests that this approach is effective at lowering teachers’ math anxiety (e.g., 
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see Tooke and Lindstrom, 1998), we found no such evidence. And yet, despite evidence 

to suggest our intervention was not effective at lowering teacher math anxiety, we still 

obtained some evidence of intervention-related improvements in student learning. Our 

findings thus question whether and to what extent effective teaching and consequently, 

student learning is dependent on teachers’ math anxiety/comfort level. However, we must 

also question the extent to which our inability to lower teachers’ math anxiety was 

associated with our limited evidence of student change. Moving forward, it is clear that 

much more research is needed to uncover when, why, and how teachers’ math anxiety is 

linked to student learning. Moreover, concerted efforts are needed to study the 

malleability of teacher math anxiety and the effect that reductions in math anxiety have 

on student learning.     

 

4.5.2   Student Results  
 

The present intervention targeted both teachers and their students. While primary efforts 

were directed at intervening at the teacher level, our primary outcomes of interest were 

directed at the student level. To this aim, the implementation of the student intervention 

consisted of teacher-led activities targeting the three major foci of the teacher intervention 

(basic numerical relationships, number-space mappings, and arithmetic). Based on the 

success of the teacher intervention by Hawes et al. (2017), we provided teachers with a 

curated bank of numerical reasoning activities to draw from and implement in their own 

classrooms. These activities were aligned with the specific foci of the teacher PD, 

providing opportunities for teachers to make links between the PD and their practice. 

Furthermore, in line with design-research practices, teachers were encouraged and given 

opportunities to adapt the activities based on their own professional judgment (Brown, 

1992). 

 As noted above, the relative effectiveness of the teacher-led student intervention 

varied across Year 1 and 2. In Year 1, children in the experimental classrooms made larger 

improvements than children in the control classrooms on measures of mental arithmetic, 

number line estimation, and a comprehensive test of numeration. Critically, both groups 

of children made highly similar gains on measures of spatial and EF skills, which were 
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not targeted during PD. Thus, the gains made by the experimental group were highly 

specific to activities designed and implemented as part of the PD. These results, coupled 

with the evidence of teacher change observed in Year 1, were in line with our original 

hypotheses, as well as the results of Hawes et al. (2017), and provided reasons to be 

confident in the current model of teacher PD. However, promising as these results 

appeared, it was important to us to see whether the results would replicate.  

Despite employing the same methodologies as Year 1, only one of the teacher 

results replicated and none of the student-level results replicated. In fact, across all 

student-level measures, Bayesian analyses suggested more support for the null than the 

alternative hypothesis. However, slightly different results emerged when analyzing the 

data with what we preregistered as a more stringent approach involving within-group 

comparisons. That is, we compared the same students’ growth across the two different 

conditions, intervention vs. control. We considered this analysis to be a more robust 

analysis as it allowed us to better control for school, teacher, and individual effects. These 

analyses indicated that students demonstrated larger gains in their numeration 

performance when they were part of the intervention group compared to the control. 

These results are promising in so much as the numeration test is a psychometrically 

reliable and robust measure of children’s overall numerical reasoning (Connolly, 2007). 

The test requires the integration and application of a wide range of both procedural skills 

and conceptual understanding of number and operations. For these reasons, it was our 

primary outcome measure.  

The comprehensiveness of this test may also help explain why we obtained some 

evidence of change on this measure, but not others, across both years of study. Change on 

this measure may simply be a reflection of our approach to intervention; that is, as broad 

in scope, targeting and aiming to integrate key facets of numerical reasoning. While this 

particular measure may have afforded varied and multiple opportunities for students to 

demonstrate what they have learned through the intervention, the other measures may 

have been too narrowly focused (e.g., symbolic number comparison). Interestingly, this is 

possibly at odds with our original predictions. Entering the study, we assumed we would 

see the largest gains on the measures more directly aligned to the content addressed in our 

PD (basic number relations, number-space mappings, and arithmetic). While we obtained 
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some evidence of this in Year 1, our overall results suggest the greatest improvements 

occurred on the most advanced measure of numerical reasoning. One plausible account 

for why change might occur on a comparatively more higher-level numerical reasoning 

tasks compared to an absence of change on more basic number tasks is due to change at 

the level of student strategy use. While the current intervention targeted both basic skill 

development as well as strategy use, it is possible that teachers were keen to focus on 

strategy use in their students. In future iterations of this model, we aim to gain further 

insights into this issue by directly observing teacher instructional practices.   

 

4.5.3   Explanations for the Inconsistencies in Findings 

   Across Years 

 

There are many potential reasons for why we observed inconsistent findings between the 

two years of study. In discussing these reasons, we will limit ourselves to explanations 

that we see as most probable, based on the data as well as our own observations. First, as 

discussed above, the null results from the students in Year 2 may have been due to the 

null results obtained from the teacher measures in Year 2. Indeed, our Year 2 findings, do 

not contradict our original hypotheses, but in some ways, support it. That is, the success 

of the current intervention is dependent on there being a relationship between the gains in 

children’s numerical thinking and those obtained at the teacher level. Put differently, 

given our design within which teacher gains are expected to translate into student gains, it 

is hardly surprising that if teachers did not benefit from the intervention that student gains 

were not observed. This leads to the critical question as to why one group of teachers 

appeared to gain from the teacher intervention while another group did not.  

A second reason for the discrepant findings between Year 1 and Year 2 has to do 

with group differences in uptake and implementation of the student focused intervention 

activities. Compared to Year 2, teachers in Year 1 spent 3 ½ more amounts of time 

engaging their students in the intervention activities. For this reason alone, we may not 

have observed clear evidence of student gains in Year 2. Moving forward, it will be 

important to also examine factors related to the quality of teacher-led activity 

implementation and associations between quality of implementation and student learning. 
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Further evidence that the two groups differed in the uptake and commitment to the project 

can be observed by comparing the shared Google Drives between groups. Recall that as 

part of the intervention teachers were encouraged to upload video/picture or paper-and-

pencil examples of student reasoning, including student assessments and student work 

samples, as well as adapted versions of the student intervention activities. The Year 1 

teachers uploaded 53 items compared to the 11 items uploaded by the Study 2 teachers. 

These data support the greater amounts of engagement we observed with teachers in Year 

1 compared to Year 2.  

A third reason for the discrepant findings may be related to the involvement of the 

school principal. Indeed, prior research on what makes for effective teacher PD points to 

principal involvement as an important factor in increasing the likelihood of instructional 

improvement (McLaughlin, 1990; Santagata, Kersting, Givvin, & Stigler, 2011; Wanless, 

Patton, Rimm-Kaufman, & Deutsch, 2013; Wilson, 2013). In the present study, the school 

principal was actively involved and a regular participant of the PD sessions in Year 1 

(attending all 5 sessions) but not in Year 2 (attending no sessions). In line with the 

research literature cited above, the Year 1 principal not only participated, but appeared to 

play a critical role as a leader in encouraging teacher uptake and commitment to the 

project. Prior to our first meeting, the principal had taken the time to explain to the group 

of participating teachers the purpose of the project. During the actual PD sessions, the 

principal asked questions, made connections between research and practice, and perhaps 

most importantly, demonstrated a keen interest in learning from the project. In between 

sessions, the principal visited the teachers’ classrooms to observe the implementation of 

the student activities and shared her observations of student learning in our subsequent 

meetings together. Taken together, we have some evidence to suggest that the school 

principal plays an important role in liaising teacher-researcher collaborations.  

A fourth and final reason for the difference in success between years of study may 

have been related to the degree of (mis)alignment between researcher and teacher goals. 

The overall goal of this project was to improve children’s numerical thinking. However, 

the extent to which this was a priority amongst the two groups of teachers appeared to 

vary. This was clear throughout the PD, but was especially apparent during our 

concluding focus group interviews, held during the last 45 minutes of the final session. 
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Teachers were asked to reflect on and share their thoughts about the PD process. In Year 

1, not only was there widespread support for the approach to teacher PD but there was 

also clear alignment between teachers’ perceptions of the PD and our researcher-designed 

rationale and purpose behind each component of the PD. In other words, teachers in Year 

1 were easily able identify and appreciate the purpose of the PD and its various 

components. For example, in the following quote by a Year 1 2nd grade teacher, we see 

evidence of appreciation for this approach to PD, but also some evidence of teacher-

researcher goal alignment:  

 

 “I think this is the best PD I’ve ever had – like ever – and it’s obvious I’ve 
been doing this for a while. It was more of an in-depth understanding of how 
really children learn math and mathematical concepts, and things like that. 
And then what I did personally, I took that and looked at the curriculum and it 
really helped me blend the two together. I absolutely didn’t discount the 
curriculum because that’s where our direction is, and I really incorporated a 
lot of what you guys offered to us…and I just think it’s a really good way to 
offer PD for teachers. It was wonderful, I really enjoyed it” (Grade 2 teacher, 
25 years of experience). 

 

This teacher’s mention of taking what she has learned about how children learn 

mathematics and applying it to the mathematics curriculum speaks to one of the ultimate 

goals of this approach to PD. In line with the principles of Cognitively Guided Instruction 

(e.g., see Carpenter 1989; 2014; Fennema et al., 1996), we aimed to equip teachers with a 

better understanding of children’s numerical reasoning and in turn a better ‘mental model’ 

of the learner (Willingham, 2017). In this way, teacher learning is not bound to the 

delivery of specific lessons/activities, but has the potential to be applied across a number 

of contexts, including various aspects of the curriculum. Other teachers also referred to 

the PD process as an effective means to bridge research and practice, making explicit 

mention of the importance of going beyond giving ‘lip service’ to research and instead 

highlighted the need go one step further; that is, use research to inform the design and 

actual implementation of student focused activities. Moreover, it is clear from the quotes 

below that teachers appreciated working with their students in an effort to bridge research 

and practice:  
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“I liked how the research translated into activities. So, if the research says 
children need to be able to do these things, then let’s build some activities 
that will actually get students to do these things. But I thought that was 
really powerful. That’s kind of that marriage of research with professional 
practice that seems to not happen a lot.” (Instructional coach) 

 
“The fact that we would hear it [research] and we went back and did it. 
Because you go to an outside PD and you sit there all day, and they tell you 
this and this and this, and they give you the research behind it… and if 
you’re skeptical at all, you’re going yeah right. And you come back to class 
and you don’t necessarily do it because you are skeptical about it, but here, 
we did it, we tried it. We went, just like Ian said, ‘woah, yeah, I would have 
never thought to do that and look what happened.” (Kindergarten teacher) 
 
“Well, I guess I might be interpreting research a little bit bigger than this, 
but I think when you bring those students in [to the shared meeting space in 
the library] and those teachers are working with their own students and 
making those observations that are so powerful saying ‘I never thought 
about that, I forgot to think about that.’ I think our teachers become 
researchers and that becomes very powerful… I think that makes a huge 
difference. This part of the PD where you’re bringing your students in is the 
most powerful, I think.” (Principal) 

 

Collectively, these quotes speak to what William James referred as the necessity of 

intermediary actions in order to bridge the research-to-practice gap (James, 1899). These 

teachers were able to identify the purpose of conducting one-to-one assessments with 

students and piloting activities with students as a whole group. They saw these 

components of the PD as effective mechanisms in making the translation from research to 

practice.  

 This same level of enthusiasm and ability to provide mechanistic accounts of the 

various components of the PD was not as apparent in Year 2. Although teachers spoke of 

the PD in positive terms, there was far less indication that teachers, both as individuals 

but also as a collective, identified with the purpose of the PD. There was little talk about 

the specific components of the PD model and at no point any explicit mention of how this 

model may better afford the application of research to practice. Instead, much of the 

conversation was centered around topics tangential to the actual PD experience. For 

example, the majority of our conversation centred around questions and concerns about 

their students’ home lives and “emotional availability to learn.”  
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“I would really like to get some more insight, I guess, understanding of 
children coming to school that aren’t prepared to learn, that aren’t able to 
learn.” (Kindergarten teacher) 
 
“Because they’re [the students] kind of in that flight response all the time. 
So, they’re not available to learn cause they’re there, right?” (Instructional 
coach) 

 

Indeed, the amount of time spent discussing issues related to their students’ home lives is 

a potentially indicative of poor teacher-researcher goal alignment. Simply put, the 

teachers in Year 2 may not have been interested in the PD we had to offer because they 

saw the need for PD of a different sort; for example, PD that places greater emphasis on 

understanding the emotional and behavioral well-being of their students. However, it 

should also be mentioned that the Year 1 teachers also identified students’ behavioral and 

emotional challenges as key obstacles in their ability to carry out effective instruction. 

And yet, compared to the Year 2 cohort, it was apparent that the Year 1 teachers were 

better able to juggle what some teachers identified as the competing goals of delivering 

academic content while also attending to their students’ emotional readiness to learn. It is 

unclear to us why one school was better able to do this than the other. We must also be 

careful not to assume the needs of both schools were the same, despite serving students of 

the same neighborhood and their almost identical performance on both cognitive and 

academic measures of achievement. It is possible that the particular cohort of students in 

the Year 2 school presented a unique set of problems; more severe than what was 

experienced in the Year 1 school. In returning to the idea of teacher-researcher goal 

alignment, it is plausible that the goals of our intervention were at odds with the school’s 

identified need to prioritize the emotional and behavioral well-being of their students. In 

future iterations of the model, we aim to further investigate the potential moderating 

influence that teacher-researcher goal alignment has on the implementation and overall 

success of the intervention.  

 

4.5.4   Limitations and Next Steps 
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There are several limitations of this study worth pointing out. First, the teacher sample 

sizes were small. This prevented us from directly assessing how teacher change related to 

student change as a function of the intervention. Moving forward, it will be important to 

demonstrate whether, to what extent, and what particular aspects of teacher learning are 

related to student growth. For example, our findings provide some hints that teachers 

numerical cognition content knowledge may be more strongly related to students’ 

numerical thinking than teachers’ self-perceived numerical cognition knowledge. 

However, larger sample sizes, at the teacher level, are needed to directly address this line 

of inquiry.  

 Another limitation of the present study was our inability to randomly assign 

teachers to the intervention. Difficult and impractical as this may be to achieve, such an 

approach would ultimately provide a more robust test of the intervention, allowing for 

better control of various school-level effects (e.g., principal, school philosophy, student 

makeup, etc.). For example, it is possible that by randomly assigning teachers to the 

intervention, the group differences in balancing the delivery of academic content and 

attending to students’ emotional needs, as noted above, may have been made equivalent 

across groups. However, because randomization at the teacher level is not always possible 

or may, arguably, not be the best option for reasons to do with ecological validity, one 

way of maintaining high scientific rigor is to use a within-group repeated measure design. 

We did so in the current study in an effort to better control for and examine the effects of 

the intervention at the individual level as opposed to the group level. This also allowed us 

to be more confident in the null results but also provided some evidence of potential gains 

in students’ numeration performance that were not detected through between-group 

analyses.      

 In moving forward, it will be important to more thoroughly examine the specific 

ways in which the intervention may have influenced teachers’ assessment and 

instructional practices. For example, although the quotes from the Year 1 teachers above 

suggest that teachers were better able to apply research-to-practice, it remains unclear 

how exactly this manifested itself in practice. We have hypothesized that a better 

understanding of research on children’s thinking provides teachers with a better basis on 

which to observe (assess) and extend children’s thinking during instruction. For example, 
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one must know what cardinality is in order to look for it in student reasoning, identify it 

as an area of strength/concern, and then use these observations to plan for appropriate 

instruction. Given that teachers are likely to differ on how they perceive and use research 

to inform assessment and instruction, it is critical to capture these differences and 

ultimately relate them to student thinking. Fennema et al., (1996), for example, were able 

to show that their approach to teacher PD (i.e., CGI) was related to increases in teachers’ 

attention to and instructional focus on mathematical problem solving. This change, in 

turn, was related to student gains in problem solving. It is this sort of detail that will be 

important to document in future research of the current model.   

  Lastly, it is worth asking whether the PD model itself may be a limitation in the 

pursuit of establishing an effective intervention. In other words, should we consider 

abandoning the model altogether, making changes to the model, or keep the model 

entirely intact? At this point, we side with keeping the model intact and instead urge the 

need for more research. Although we did not obtain unambiguous support for the model, 

we did see evidence of teacher and student gains in Year 1. More importantly, it seems 

that the gains observed in Year 1 and the mostly absent gains in Year 2 could be attributed 

to poor uptake and implementation of the PD.  Moreover, the results of Year 1 align with 

the success of the model in the study by Hawes et al., (2017). For these reasons, we 

remain hopeful that the present model has the potential to be an effective agent of both 

teacher and student change. However, it has also become clear that this potential rests on 

variety of factors that, at the moment, remain poorly understood. As others have shown, it 

may not be enough to build a model of teacher PD based on established features of 

effective PD (Hill, Corey, & Jacob, 2018). Indeed, even when teacher PD models do 

incorporate effective features of PD, including sustained focus on student’s mathematical 

thinking, studies of these models yield mixed results (Hill et al., 2018; Jacob, Hill, Corey, 

2017). By including two studies of the same approach to teacher PD, but with differing 

results across the two contexts, we were able to further examine why this might be. While 

we have suggested these differences reside in uptake and implementation, future efforts 

are needed to follow-up on these possibilities and examine their influence with finer 

grained analyses and measurement.  
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4.5.5   Conclusion   

 

This study provides new insights into an old problem: How to address the research-to-

practice gap? We demonstrate ‘proof of concept’ for the design and implementation of a 

5-day teacher PD model that aims to better integrate numerical cognition research and the 

teaching of early years mathematics. Our approach is interdisciplinary in design, built to 

foster improved communication and understanding of children’s learning among both 

researchers and practitioners alike. For this reason, we see the model as one not limited to 

bridging numerical cognition research and practice, but as one that has the potential to be 

applied to other research-practice gaps (e.g., literacy). Although the current findings 

provide some indication that the model is effective at bringing about change at both the 

level of teacher and student, the inconsistent findings between Year 1 and 2 make it clear 

that more research is needed. More specifically, in contrasting the results from Years 1 

and 2, it may not be strictly a question of whether the model is effective but also a 

question as to when and under what conditions the model is effective. We obtained 

evidence to suggest widespread buy-in and uptake in Year 1, and much less evidence of 

this in the Year 2 group. This is but one plausible reason for the discrepancies in results. 

Moving forward, it will be important to more systematically examine why the same 

approach and model of teacher PD might be taken up differently in different contexts.  
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Chapter 5  

5 General Discussion 

5.1   Overview  
 

This thesis was carried out to better understand how humans are able to learn and perform 

mathematics. To approach this goal, I studied the ways in which cognitive, neural, and 

educational factors influence mathematical thinking and learning. While the first two 

studies focused on revealing the cognitive and neural underpinnings of spatial, numerical, 

and mathematical cognition, the third and final study investigated how research in 

numerical cognition can be used to inform the teaching and learning of early years 

mathematics (Kindergarten – Grade 3).  

 In light of the findings and common themes examined in Studies 1 and 2, I begin 

this Discussion by revisiting explanations of why, when, and how spatial and 

mathematical cognition may be linked. I discuss how the current thesis (Studies 1 and 2) 

contributes to an improved understanding of the four candidate mechanisms linking space 

and math outlined in the Introduction. I then turn my attention to the role that spatial 

training studies can play in further elucidating the causal mechanisms hypothesized to 

underlie spatial-mathematical relations. The second major section of the Discussion 

focuses on the research-practice gap in numerical cognition research and mathematics 

education. Lastly, I end by considering the implications of the current thesis and how it 

adds to the larger goal of an improved understanding of mathematical thinking and 

learning.  

5.2    What Explains the Relations between Spatial and 

Mathematical Performance?  

 

As outlined in the Introduction, at least four candidate mechanisms have been put forward 

to explain the reliably robust relations between spatial and mathematical cognition. These 

mechanistic accounts include the: (1) Spatial representation of numbers account, (2) 
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shared neural processing account, (3) working memory account, and (4) spatial 

modelling account. I will now discuss how the current findings contribute to an improved 

understanding of each account and speculate what this might mean moving forward.  

 

5.2.1   Spatial Representation of Numbers Account 
 

According to the spatial representation of numbers account, numbers and their various 

relations are represented along a ‘mental number line’ (Fischer & Fias, 2005). In turn, the 

precision of one’s mental number line has been posited to play an important role in 

performing a host of numerical reasoning tasks, including comparing, ordering, and 

operating on numbers (Fischer et al., 2011; Siegler & Ramani, 2009). Although the 

current thesis did not directly test this account of the space-math link (and is least 

informed by the present thesis), the findings point to spatial visualization as a potential 

variable of interest in the development of spatial-numerical associations (a relation 

potentially best explained by the spatial-modelling account further discussed below).  

To date, the majority of research in this area has focused on the automatic 

mappings of numbers to space (aka numerical-spatial biases; see Toomarian, & Hubbard, 

2018). However, the precise mechanisms underlying the mental processes related to the 

automatic mapping of numbers to space remains unclear.  Recently, an alternative view 

has emerged which argues that the mapping of numbers to space is not automatic but an 

active process. Accordingly, numerical-spatial associations/biases may reflect learned 

associations of number-space relations (e.g., internalizing the structure of physical 

number lines) and/or  numerical-space relations constructed in working memory during 

task execution (van Dijck & Fias, 2011). Although working memory has been posited as 

the cognitive resource underlying the active construction of numerical-spatial relations, 

the current thesis indicates that spatial visualization might also play an important role in 

the mapping of numbers to space. Findings from Study 1 indicated strong behavioral 

relations between spatial visualization and basic numerical competencies. Study 2 

demonstrated that basic symbolic number processes and spatial visualization (defined as 

mental rotation) activated large areas of overlapping neural cortex in and around the IPS.  
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Overall, the findings from Study 1 and 2 suggest a close coupling of spatial 

visualization and basic numerical processes. These findings suggest the need to more 

closely consider the role of spatial visualization processes in forming spatial-numerical 

associations. Moving forward, it will necessary to further test whether spatial 

visualization underlies both so-called automatic spatial-numerical mappings (e.g., as 

measured with the SNARC paradigm) compared to more deliberate mappings of numbers 

to space (e.g., number line estimation tasks). Moreover, research is needed to further 

disentangle whether and to what extent working memory and spatial visualization 

processes are differentially related to spatial representations of number.  

 

5.2.2   Shared Neural Processing Account 
 

The shared neuronal processing account suggests that numbers and space are linked 

through shared underlying neuroanatomical substrate, typically taken as evidence of the 

‘mental number line.’ To this point, neural relations between spatial and numerical 

thought have been limited to the relation between lower-level spatial skills and basic 

numerical competencies (e.g., see Hubbard, Piazza, Pinel, & Dehaene, 2005). Study 2 

aimed to offer additional explanations for the ways in which spatial and numerical 

cognition may be linked in the brain; thus, shedding new light on the shared neuronal 

processing account.  

Findings from Study 2 revealed that cognitive processes related to basic numerical 

skills, mental rotation, and mental arithmetic were all associated with large areas of 

overlapping activity in and around the bilateral IPS. This study is significant in that it 

demonstrates that the neural relations between spatial and numerical processing 

(including arithmetic) extend beyond lower-level associations (Cf. Toomarian, & 

Hubbard, 2018). Instead, the neural correlates of higher-level spatial processing (mental 

rotation) also appear to relate to numerical processing, including arithmetic. This finding 

aligns with the findings from Study 1, suggesting that spatial visualization skills may play 

an important role in forming number-space relations. Though because spatial-numerical 

mappings were not explicitly probed, the role of spatial visualization in forming space-

number relations remains speculative.  
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  Although the ‘mental number line’ account may be one explanation for space-

number associations in the brain, the findings from Study 2 suggest other ways in which 

spatial and numerical cognition may be linked.  While numerical and arithmetic 

processing were associated with overlap in the left IPS, mental rotation and arithmetic 

were associated with overlap in the middle frontal gyri. These findings are significant in 

that they suggest that spatial and numerical thinking may be linked through task 

dependent operations. For instance, mental rotation and mental arithmetic both share the 

need to mentally manipulate information. This common operation might be one reason for 

the observed overlap in frontal regions typically associated with executive functions 

(Owen, McMillan, Laird, & Bullmore, 2005; Smith & Jonides, 1999). Basic symbolic 

number processing arguably requires far less top-down executive control mechanisms, 

which may explain why symbolic number was not associated with activity in this same 

region. As argued in Study 2, this process-based approach to understanding convergence 

and divergence in cognitive functions may prove useful in future research aiming to 

further reveal the ways in which spatial and mathematical cognition are linked.  

 

5.2.3   Working Memory Account 
 

The working memory account calls into question unique relations between spatial and 

mathematical skills. Instead, the link may have its roots in individual differences in other 

cognitively demanding skills, including executive function skills and working memory 

capacity (e.g., see Lourenco, Cheung, & Aulet, 2018). To test this possibility, Study 1 

examined whether relations between spatial visualization skills and mathematics 

achievement could be explained by third party variables, including visual-spatial working 

memory (VSWM), EF skills, and general intelligence (g-factor). Results indicated that 

relations between spatial visualization and mathematical skills could not be explained by 

any of these other variables. This finding is significant in that it is the first source of 

evidence, at least for the time being, to rule out the working memory account as a 

potential explanation for the space-math link. The question of why spatial visualization 

might be a better predictor of mathematics is an important one and is further discussed in 

the next section.  
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5.2.4   Spatial Modelling Account 
 

The spatial modelling account places emphasis on spatial visualization as a general 

mechanism used to model, organize, and simulate a wide variety of numerical and 

mathematical concepts. According to this account, spatial visualization is predicted to 

play an especially important role when the mathematical problem is unfamiliar to the 

individual. As I will argue next, of all the accounts, the spatial modelling account offers 

the best explanation for the data and findings revealed in the present thesis. Moreover, the 

spatial modelling account gives meaningful context to the understanding of the other 

accounts.   

 The spatial modelling account might explain why we observed stronger relations 

between novel mathematical content compared to familiar mathematical content. That is, 

although Study 1 revealed strong latent relations between spatial visualization and basic 

numerical skills, the relation was considerably stronger between spatial visualization and 

mathematics achievement. Critically, the mathematics achievement measures used in this 

study focused on applied problem solving and, because it was adaptive, included at least a 

portion of questions that were novel to the participant. Thus, one way in which children 

may have made sense of these novel problems was to mentally generate and model 

various solutions to the problems – mental operations typically associated with spatial 

visualization processes (Lohman, 1996).  

 The emphasis placed on the need to generate solutions to mathematics problems 

may also help explain why spatial visualization was a stronger predictor of mathematics 

than VSWM or EF skills. As noted in the Introduction, VSWM and spatial visualization 

may differ according to  cognitive demands placed on the need to “recall” versus 

“generate” visual-spatial information. While most VSWM measures primarily emphasize 

the need to recall information, most spatial visualization measures primarily emphasize 

the need to generate and mentally manipulate mental models of stimuli. These 

differences, at least at the measurement level, may be one reason to predict stronger 

relations between spatial visualization skills and novel mathematical content. Moreover, 

VSWM may play a greater role in mathematical tasks that emphasize the need to recall 
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and maintain information (e.g., basic arithmetic). Thus, relations between spatial and 

mathematical performance may be dependent on the mathematical task in question. 

Accordingly, the space-math link may best be explained by the spatial modelling account 

under some conditions (novel mathematical content) and the working memory account 

under other conditions (coordination of familiar mathematical content).  

According to this proposal, the space-math link may differ across individuals as a 

function of their experience and familiarity with the mathematical task in question. For 

example, a child who is first learning basic arithmetic may find it useful to model the 

solution, whereas a child fluent in basic arithmetic may have no need to pause, reflect, 

and model the problem and solution. This suggests the need to more carefully consider 

the learner’s familiarity with the mathematical content under investigation when 

examining mechanisms underlying the space-math link. Said differently, experience may 

moderate relations between space and math. To my knowledge, this represents a major 

gap in the literature and represents a promising area of future study.   

As revealed in Study 2, neuroimaging may prove to be a useful tool in further 

understanding when and under what conditions spatial visualization may correlate with 

different components of mathematics. Moreover, neuroimaging may prove useful in 

testing whether spatial visualization is more associated with novel mathematical content 

vs. familiar content. If spatial visualization does indeed play a role in helping novice 

learners model mathematical relations, then we might expect to see increased neural 

activity in regions associated with spatial visualization processes compared to regions 

associated with mastery of the content. For advanced learners (those that have mastered 

the content under question), we might expect to see increased neural activity in regions 

associated with mastery of the content and less activity in regions associated with spatial 

visualization processes. Indeed, the fronto-parietal shift is thought to reflect a shift in 

effortful to more automatic numerical processing (Ansari, Garcia, Lucas, Hamon, & 

Dhital, 2005). It is possible that a similar type of shift might occur from regions more 

attuned to spatial processing to regions more attuned to verbal storage as a function of 

gong from a novice to mastery learner. Future research is needed in this regard as it has 

the potential to shed new light on the spatial modelling account.  
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Lastly, it is worth considering how the spatial modelling account may help to 

explain the spatial representation of numbers account (aka the mental number line 

account). Numbers and their various relations may be conceptualized and visualized in a 

variety of ways. The ‘mental number line’ might be but one demonstration of the ways in 

which numbers and their relations are represented spatially. Indeed, the spatial modelling 

account might also explain why other entities, such as days and months of the week 

(Gevers, Reynvoet, & Fias, 2003; 2004) and even emotions (Holmes, Alcat, & Lourenco, 

2019), have been found to be mapped to space. Accordingly, the capacity to mentally 

organize and model concepts according to spatial metrics is not limited to numbers and 

other magnitudes, but might extend to other mathematical domains and even other non-

mathematical domains as well. However, given that mathematics is frequently expressed 

and conceived in terms of numerical-spatial relations (e.g., Pythagorean Theorem), it 

seems reasonable to predict that spatial modelling may play an especially important role 

in mathematical thought.   

 

5.2.5   An Integrated Description of the Four Accounts 

 

The spatial modelling account provides the best description of the current thesis. 

However, it is possible that all four accounts interact with one another and at certain 

points in time and under different testing conditions present themselves as the most likely 

explanation for a particular space-math link. Moreover, the extent to which these various 

accounts are descriptions of the same underlying mechanism but in different forms and at 

different levels of analysis is an important question. For example, it is possible that one of 

the ways in which numbers become represented spatially is through the active processes 

of spatial modelling (e.g., visualizing a number line to reason about numerical relations). 

From a biological perspective, it could be that the IPS and closely associated regions 

provide the necessary neuronal networks to carry out these modelling and 

transformational processes. Moreover, even when the spatial modelling of numerical 

concepts no longer serves the individual (i.e., the concepts at hand have become 

automatized more or less), these same neural substrates may continue to underlie both 
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numerical and spatial processes. This may occur despite an independence in function. If 

we assume that spatial visualization is a relatively stable trait, then we should expect to 

see lasting correlations between spatial visualization and numerical skills even when 

spatial visualization no longer serves a purpose in one’s semantic understanding of 

number. In other words, spatial and numerical processes may continue to be correlated, 

both neurally and behaviorally, long after they have become conceptually divorced from 

one another. This relation may remain because of individual differences in spatial 

visualization skills that once helped give rise to conceptual mappings between numbers 

and space. This integrated account may explain why we continue to see correlations 

between spatial visualization skills and basic numerical competencies into adulthood. It 

might also explain why we see relations between intentional numerical-spatial mappings 

(e.g., as measured with the number line task) and mathematics (Schneider et al., 2018), 

but mixed evidence for relations between automatic numerical-spatial mappings (i.e., 

SNARC) and mathematics (Cipora, Patro, & Nuerk, 2015). Moving forward, it will be 

important to continue to theorize and test how and when the four accounts are both 

related and distinct from one another.  

 

5.3    Next Steps – Establishing Causal Relations between 

         Spatial and Mathematical Thinking 

 

The current thesis adds to a growing body of research suggesting close relations between 

spatial and mathematical thought (e.g., see Mix & Cheng, 2012). And while the findings 

from Study 1 and 2 offer new insights into ways in which spatial and mathematical 

thinking may be linked, follow-up studies are needed to test for causal relations between 

spatial and mathematical cognition. To this end, spatial training studies offer an ideal 

methodological approach. A recent meta-analysis suggests that spatial training is an 

effective means for improving spatial thinking in people of all ages and through a wide 

assortment of training approaches (e.g., in-class training, video games, spatial task 

training; Uttal et al., 2013). Moreover, the effects of spatial training appear to generalize 

to intermediate transfer measures; that is, other spatial measures not part of the training. 

Overall, current evidence suggests that spatial reasoning is a highly malleable construct.   
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 Spatial training studies have the potential to further reveal the ways in which 

spatial and mathematical thinking may be linked. Indeed, spatial training studies offer the 

means to more thoroughly investigate the hypothesized relations between spatial and 

mathematical thought discussed in Study 1 and 2. More specifically, spatial training 

studies offer opportunities to test the space-math link as they relate to the four candidate 

mechanisms reviewed above. For example, different predictions can be made depending 

on the different accounts reviewed. According to the spatial representation of numbers 

account, one might predict that spatial training is related to improvements in one’s 

internal representation of numbers according to a more spatially precise mental number 

line. This refinement in one’s ‘mental number line,’ in turn, is predicted to facilitate 

greater numerical reasoning. Critically, in order to test this hypothesis, future training 

studies will need to include measures of spatial-numerical mappings (e.g., intentional 

number line estimation tasks, automatic SNA tasks, including SNARC effects). Any gains 

in more general measures of numerical reasoning should theoretically be mediated by 

change on these measures. One way of testing the spatial-modelling account would be to 

gain insights into the strategies that participants use while engaging in the numerical and 

mathematical tasks. What evidence is there that the spatial visualization training actually 

leads to an improved ability to mentally model the problem at hand? For example, 

collecting process data of the sort used in Hegarty and Kozhevnikov’s (1999) word 

problem studies (see Introduction), could be used to demonstrate the extent to which 

spatial training results in improved schematic representations of the problems. Evidence 

of this sort would lend support for the spatial modelling account. In terms of the shared 

neural processing account, researchers have yet to examine the neural correlates of 

spatial training. However, a rather straightforward prediction would be that training-

induced changes in neural activity (or the underlying neuroanatomical structures) should 

be correlated with improvements in numerical/mathematical reasoning. Lastly, according 

to the working memory account, changes in spatial visualization should more broadly be 

encapsulated by changes in working memory. It is possible that spatial visualization 

training is akin to working memory training. Future training studies thus need to also 

include measures of working memory to provide evidence for or against this possibility.  
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Moving forward, it will also be important to establish whether mathematical 

training in itself is a form of spatial training. That is, is there any evidence that 

mathematics training is related to improvements in spatial cognition? The results from 

Study 3 suggest not, as there was no indication that gains in children’s 

numerical/mathematical thinking was associated with gains in children’s spatial thinking 

of EF skills. However, given the rather short time frame of this study, as well as the 

limited evidence of gains in children’s numerical skills, more research is needed to more 

fully address this question. It seems plausible that bidirectional relations exist, but that the 

amount of transfer may depend on the degree of overlap in the mental operations that is 

shared between the two domains. Presently, the question of whether mathematics learning 

generalizes to spatial learning remains an open question.  

To conclude, future training studies have the potential to provide new insights into 

the theorized mechanisms underlying the space-math link. This approach is critical in 

revealing why and under what conditions training might be effective for some individuals 

but not others. Moreover, as mentioned in the Introduction, the better understanding we 

have of why spatial and mathematical thinking are linked, the more likely it is that this 

information can be used in educational and clinical practice. 

 

5.4     Bringing Numerical Cognition Research into the 

          Classroom 

 

Research into numerical cognition, including the research discussed above, has the 

potential to inform educational practice. However, all too often the findings and insights 

revealed in peer-reviewed journal articles fail to have any bearing whatsoever on 

educational practice. In many regards, this may be a good thing. For example, the 

implementation of unreplicable findings into practice may actually lead to misguided 

teaching efforts. Other times, however, research findings provide a firm base on which 

teachers and the teaching profession as whole can use as a guide, framework, or 

inspiration to effective instruction. For example, to borrow from the language cognition 

literature, years of research have provided strong evidence that deliberate phonics 

instruction is an essential component of effective reading programs (e.g., see Castles, 
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Rastle, & Nation, 2018). Although numerical cognition as a field is relatively new 

compared to the field of literacy reserach, there is still a large body of research on which 

to stand on and use to inform early mathematics instruction. The primary goal of Study 3 

was to take some of the well-established research findings from the numerical cognition 

literature and work alongside practising teachers (Kindergarten to Grade 3) to integrate it 

into their own practice.   

 The results of this two-year study were interesting but ultimately difficult to 

interpret. While the Year 1 results demonstrated program success at both the teacher and 

student level, the results of Year 2 indicated minimal evidence of success at both the 

teacher and student level. The Discussion section in Study 3 offers several explanations 

for why we may have observed differential effects across both years of study, including 

differences in principal involvement, implementation of the student-focused intervention, 

and overall teacher buy-in. However, these explanations are, at present, mostly 

speculative and it is clear that more research efforts are needed to further evaluate what 

makes the teacher intervention effective in one context but not another.  

 What was not explicitly discussed in Study 3 is how these findings fit into the 

broader literature on the effectiveness of in-service teacher PD interventions. As it turns 

out, our mixed findings are reflective of the field as whole. Interestingly, mixed findings 

appear to be the norm, even when teacher PD programs adhere to widely regarded 

effective features of PD (e.g., see  Hill, Corey, & Jacob, 2018). Indeed, there is general 

consensus amongst educational researchers that effective teacher PD consists of several 

key features: a focus on subject matter content; teachers as active participants in the PD 

process; coherence with school goals and local policies; and includes collaborative 

participation (Desimone, 2009; Penuel, Fishman, Yamaguchi, & Gallagher, 2007). 

Arguably, the teacher PD model described in Study 3 adheres to all of these principles. 

Yet, our study, like many others that have come before, indicate that the inclusion of these 

features are not a guarantee of program success (e.g., see Garet et al., 2011; Hill, Corey, 

& Jacob, 2018; Jacob, Hill, & Corey, 2017; Santagata, Kersting, Givvin, & Stigler, 2010). 

According to Hill et al. (2018) the field of PD research has reached a crossroad. Now, 

more than ever, there is a need to better understand what makes some teacher PD 

programs – along with the individual features that make-up a program – more effective 
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than others. However, as I argue next, there is also a need to consider more than just the 

PD program itself.  

 Study 3 offers some insight into this need, suggesting that even the same program 

may have differential effects from one school to another. This points to the importance of 

replicating previously identified successful teacher interventions. Our findings also 

suggest that more research efforts need to be directed at identifying how features of the 

local school context influence teacher uptake and implementation. This includes the 

individual and collective characteristics of the teachers involved. In the end, it is likely 

not enough to evaluate the effectiveness of PD programs based on the specific features it 

entails. Even the best designed PD programs are likely to vary in degrees of effectiveness 

as a function of the school climate and teachers involved. Thus, in order to advance from 

the current crossroad, it will be important to not only evaluate the programs themselves, 

but the context in which the program is carried out, and ultimately the ways in which the 

program and context interact with one another.  

While this may seem like an ambitious endeavour (and it is), understanding what 

makes for effective PD has major implications for the improvement of teaching and 

learning. For example, from an economics standpoint, the financial cost of teacher PD in 

the United States is estimated at $8 billion per year or an average annual spending by 

school districts of $18,000 per teacher (Layton, 2015). While this figure varies from year 

to year and from study to study, it is clear that school boards, including those here in 

Ontario, spend an enormous amount of money and resources on teacher PD. At least some 

of this money may be better spent on investigating what makes for effective PD, 

including an increased research focus on how the local context influences PD uptake and 

implementation. It is only through a better understanding of what works and what does 

not work when it comes to teacher PD that we can hope to reliably meet the goal of 

improved teaching and student learning.  

 

 

5.4.1  Contributions to the Discipline of Mind, Brain, and 

  Education  
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The teacher PD intervention described in Study 3 is unique in that in places much more 

emphasis on the role of developmental cognitive neuroscience in mathematics education. 

Indeed, in bringing these two disciplines together, Study 3 addresses some of the central 

aims of Mind, Brain, and Education (aka Educational Neuroscience). Chief amongst these 

aims is the creation of an infrastructure that creates productive bidirectional exchange 

between researchers and practitioners. As discussed in the Introduction, the relatively new 

discipline of Mind, Brain, and Education remains at a standstill, fully acknowledging the 

potential benefits of bridging cognitive science and education, but falling short in 

providing a means to do so. As William James noted over 100 years ago, an “intermediary 

inventive mind” is needed to bridge the science of the mind and art of teaching (James, 

1899). In the model presented in Study 3, we see evidence of both teachers and 

researchers working together to fulfill this role. Through reading, discussing, and 

engaging in cognitive, developmental, and educational research, teachers are brought into 

closer contact with the ‘science of the mind.’ Theoretically, this knowledge can then be 

used to positively inform and influence the ‘art of teaching.’ Researchers, on the other 

hand, are brought into closer contact with the art of teaching and everyday classroom 

practice. In addition, this knowledge may further serve to inform and influence research 

and understanding into the science of the mind. Thus, in its ideal state, all members 

involved in the teacher-research PD model contribute and come away from the process 

with an improved and more integrated understanding of mind, brain, and education. 

While it is clear that more research is needed to further test the realization of these goals, 

the results of Study 3 do indicate some promising results. Moving forward it will be 

necessary to better quantify the extent to which these bidirectional goals of the PD model 

are being met.  

Future goals aside, Study 3 marks an important advance, providing proof of 

concept that is possible to bring learning scientists and practitioners together to work 

towards evidence-informed mathematics instruction. This is but one small advance in the 

goal of building better connections between research and practice.  
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5.5    Concluding Remarks  

 

The present thesis contributes to an improved understanding of mathematics thinking and 

learning in several ways. First, the results of Study 1 and 2 provide new perspectives on 

the ways in which spatial, numerical, and mathematical thinking may be linked at both 

the behavioral as well as neural levels of analysis. The results from these studies 

demonstrate close behavioral as well as neural associations between spatial visualization 

processes and various numerical and mathematical processes. These findings have led to 

the hypothesis that spatial visualization may play an important role in how people come 

to mentally organize, model, and simulate numerical and mathematical relations. The 

spatial modelling account, as it has been named in this thesis, is particularly appealing 

because it offers new ways of thinking about and contextualizing other alternative 

accounts of the space-math link (e.g., the ‘mental number line’ account). Research is now 

needed to test the predictions associated with this account (e.g., that spatial visualization 

processes are especially important during the learning of novel mathematical content). A 

second contribution of this thesis concerns the progress made towards bridging the 

research-practice gap between numerical cognition and mathematics education. Study 3 

describes the design, implementation, and results of a new model of teacher Professional 

Development aimed to better integrate numerical cognition research with the teaching and 

learning of early number. Findings from this study indicated that the PD may have been 

effective at increasing teachers’ self-perceived numerical cognition knowledge and 

students’ general numeracy skills. However, there were notable differences in the effects 

of the PD across the two sites studied, with much stronger effects at one site than the 

other. Thus, critical questions remain as to when and why the model may be effective in 

some school contexts but not others. Although more research is needed, the PD model 

presents a promising new approach in the effort to apply research findings from numerical 

cognition the teaching and learning of early years mathematics. Together, the present 

thesis provides new insights into the cognitive and neural underpinnings of mathematical 

thought and a viable approach to the translation and application of numerical cognition 

research to authentic classroom settings.  
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