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A B S T R A C T   

Are number symbols (e.g., 3) and numerically equivalent quantities (e.g., •••) processed similarly or distinctly? 
If symbols and quantities are processed similarly then processing one format should activate the processing of the 
other. To experimentally probe this prediction, we assessed the processing of symbols and quantities using a 
Stroop-like paradigm. Participants (NStudy1 = 80, NStudy2 = 63) compared adjacent arrays of symbols (e.g., 4444 
vs 333) and were instructed to indicate the side containing either the greater quantity of symbols (nonsymbolic 
task) or the numerically larger symbol (symbolic task). The tasks included congruent trials, where the greater 
symbol and quantity appeared on the same side (e.g. 333 vs. 4444), incongruent trials, where the greater symbol 
and quantity appeared on opposite sides (e.g. 3333 vs. 444), and neutral trials, where the irrelevant dimension 
was the same across both sides (e.g. 3333 vs. 333 for nonsymbolic; 333 vs. 444 for symbolic). The numerical 
distance between stimuli was systematically varied, and quantities in the subitizing and counting range were 
analyzed together and independently. Participants were more efficient comparing symbols and ignoring quan
tities, than comparing quantities and ignoring symbols. Similarly, while both symbols and quantities influenced 
each other as the irrelevant dimension, symbols influenced the processing of quantities more than quantities 
influenced the processing of symbols, especially for quantities in the counting rage. Additionally, symbols were 
less influenced by numerical distance than quantities, when acting as the relevant and irrelevant dimension. 
These findings suggest that symbols are processed differently and more automatically than quantities.   

1. General introduction 

Basic number processing is a cognitive foundation that supports 
mathematical thinking. Basic number processing is defined as the ability 
to understand, estimate, and/or discriminate between numerical mag
nitudes. From very early in development humans have the ability to 
process nonsymbolic numerical magnitudes (often referred to as quan
tities) (e.g., ‘•••’ vs. ‘••’) (Brannon, 2006). This capacity to process 
quantities is shared with non-human primates as well as other species 
(For reviews see: Cantlon, 2012; Dehaene, 2007). This suggests that the 
ability to process quantities has a long evolutionary history. Critically, 
unlike non-human species and infants, human adults, in cultures that 
teach math symbolically, have the unique, culturally acquired ability to 
process numbers symbolically (e.g.,‘3’). 

The dominant assumption in the field of numerical cognition has 

been that this culturally acquired ability to represent numbers symbol
ically is linked to an evolutionarily ancient system used to process 
quantities (Brannon, 2006; Dehaene, 2007; Dehaene et al., 2003; Hal
berda et al., 2008; Nieder & Dehaene, 2009). However, a growing body 
of research has revealed that symbols and quantities are processed more 
distinctly than has been assumed (Cohen Kadosh et al., 2007; Cohen 
Kadosh et al., 2011; Cohen Kadosh & Walsh, 2009; De Smedt et al., 
2013; Holloway et al., 2010; Lyons et al., 2012, 2014; Sokolowski et al., 
2017). The majority of previous research has examined how participants 
process symbols and quantities using active tasks that require partici
pants to attend to the presented stimuli and typically, make a decision 
based on these stimuli (e.g., Ansari, 2008; Dehaene et al., 1998; Fias 
et al., 2003; Fulbright et al., 2003; Holloway & Ansari, 2008, 2009; 
Moyer & Landauer, 1967). Importantly, in these studies, the numerical 
magnitude acts as the relevant dimension of the task. For example, in a 
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number comparison task, participants are presented with two numerical 
magnitudes (i.e. two symbols or two quantities) and asked to indicate 
which of the two numerical magnitudes has more items (e.g., Buckley & 
Gillman, 1974; Holloway & Ansari, 2009; Moyer & Landauer, 1967). 
While active tasks, such as number comparison tasks, provide insight 
into the effortful processing of numerical magnitude, relatively less is 
known about the automaticity of processing numbers. 

A small set of studies have attempted to unravel how human adults 
process symbols and quantities using tasks where the symbols and 
quantities presented in the task are irrelevant (e.g., Furman & Rubins
ten, 2012; Naparstek & Henik, 2010, 2012; Naparstek et al., 2015; 
Pansky & Algom, 2002; Pavese & Umiltà, 1998, 1999; Windes, 1968). 
An example of a task where the numerical magnitudes are included as 
irrelevant stimuli is a Numerical Stroop Task. In a Numerical Stroop 
Task a participant is presented with two symbols that differ both in 
numerical magnitude and in physical size (e.g., 3 and 4) and are asked to 
indicate which symbol is numerically or physically larger (Henik & 
Tzelgov, 1982; Leibovich et al., 2013). When participants complete this 
task a so-called size congruity effect (SCE) is obtained. The SCE reflects 
the finding that the dimension to which the participant does not need to 
attend (i.e. the irrelevant dimension) influences speed and accuracy on 
the comparison task. For example, when making a physical size judg
ment, on a Numerical Stroop task that includes two different Arabic 
numerals in different size fonts, the numerical magnitude of the symbols 
being compared influences judgments of the physical size. This finding, 
that the semantic meaning of a symbols affects physical size judgments, 
despite the fact that the participants do not need to process the semantic 
meaning of the number to succeed at the task, has been taken to suggest 
that the system used to process the physical size of an Arabic numeral is 
at least partially overlapping with the system used to process the se
mantic meaning of the Arabic numeral. Critically, although this task is 
useful in revealing how symbolic numerical magnitudes influence the 
processing of the non-numerical magnitude, physical size, this paradigm 
cannot be used to address questions pertaining to the differences and 
similarities in processing symbolic and nonsymbolic numerical magni
tudes (i.e. symbols and quantities). A Stroop-like task is an excellent way 
to explore whether symbols and quantities are processed similarly or 
distinctly when acting as the relevant and the irrelevant dimension. 
Indeed, a Symbolic-Nonsymbolic Stroop Task is the ideal task to identify 
whether symbols and quantities influence the processing of the other 
and if this influence is symmetrical. 

1.1. The role of numerical distance 

Among the most frequently cited evidence to support the notion that 
symbols are fundamentally linked to quantities is the finding that human 
adults produce a ‘distance effect’ when making comparative judgments 
of both symbolic and nonsymbolic numerical magnitudes (e.g., Dehaene 
et al., 1998; Holloway & Ansari, 2008, 2009; Krajcsi et al., 2016; Moyer 
& Landauer, 1967; Pavese & Umiltà, 1998; van Opstal & Verguts, 2011). 
The distance effect is the highly replicable finding that humans are faster 
and more accurate at judging which of two numerical magnitudes is 
numerically greater when those magnitudes are numerically far apart, 
rather than close together (Moyer & Landauer, 1967). There have been 
many reports of similar distance effects during the processing of symbols 
and quantities that have been replicated across many studies (Buckley & 
Gillman, 1974; Holloway et al., 2010; Holloway & Ansari, 2008; Krajcsi 
et al., 2016; Moyer & Landauer, 1967) and have been taken as evidence 
that symbols and quantities are represented using a shared analogue 
magnitude system (Dehaene, 2007; Dehaene et al., 1998). Numerical 
distance has been shown to influence the processing of numerical 
magnitudes when the symbol or quantity is the relevant dimension 
(Buckley & Gillman, 1974; Holloway & Ansari, 2009; Moyer & Lan
dauer, 1967) and the irrelevant dimension (Henik & Tzelgov, 1982; 
Pavese & Umiltà, 1998, 1999). It is worth noting that the comparison 
distance effect (i.e., an effect when participants effortfully compare two 

digits) dissociates from the priming distance effect (i.e., the finding that 
when a target number is preceded by a priming number, participants 
automatically respond more quickly when the prime-target numerical 
distance is smaller), which is thought to be a more direct measure of 
representational overlap (Van Opstal et al., 2008). Across tasks, the ef
fect of numerical distance has been used to assess the degree to which 
the underlying representations that support the processing of numerical 
magnitudes are overlapping and thus have been interpreted to be a 
measure of representational precision (Nieder & Dehaene, 2009; Verguts 
& Fias, 2004); however, with effortful tasks this effect may also be 
related to a more general comparison process. Regardless, assessing 
whether the influence of symbols and quantities on each other is 
modulated by numerical distance will add to the current understanding 
of the connection between symbols and quantities by identifying not 
only whether symbols and quantities are processed in parallel, but also 
whether the representational precision of this influence is symmetrical. 

1.2. The role of countability 

Subitizing is a cognitive ability that allows for the fast, automatic, 
and accurate identification of the quantity of a small set of items (i.e., 
sets containing 1–4 items) (Mandler & Shebo, 1982; Trick & Pylyshyn, 
1994). Large sets (i.e., sets containing 5 or more items) are considered to 
be in the ‘counting range,’ as these sets are evaluated through either the 
effortful process of counting or approximate estimation. The quantity of 
a set of items in the subitizing range is named more quickly and accu
rately than the quantity of a set of items in the counting range (Kaufman 
et al., 1949;Trick & Pylyshyn, 1994). Subitizing occurs even when ob
jects are presented among distractor objects, provided the subitized and 
distractor objects differs by perceptual features (Trick & Pylyshyn, 
1993), the items being subitized are whole objects (Trick & Enns, 1997), 
and the distractors are held constant through the block (Liu et al., 2020). 
Prior research has refuted the idea that there is a single estimation 
system used to process quantities in both the subitizing and counting 
range and instead supports the notion that humans possess a dedicated 
mechanism for processing small subitizable quantities (Revkin et al., 
2008). Indeed, the processing of small quantities (i.e., 1–4) is supported 
by a parallel individuation system (PI system), used to track objects in 
order to identify the exact number of items in small sets. In contrast, 
research suggests that an analogue magnitude system (often referred to 
as an approximate number system (ANS)) supports the processing of 
quantities with five or more objects. The analogue magnitude system 
relies on approximate estimation to process larger quantities (For review 
see: Hyde, 2011). If small quantities are processed by a more exact 
system, it follows that the processing of symbols should be more similar 
to the processing of small quantities than large quantities. In line with 
this, if there is an asymmetry in the way symbols and quantities are 
processed, it should be greater when comparing symbols to quantities in 
the counting range than in the subitizing range. Therefore, in addition to 
comparing symbols to quantities across the full range, the processing of 
symbols will be compared to the processing of quantities in the subi
tizing range and the counting range, independently. 

1.3. The current study 

In the current study, we assess whether symbols and quantities are 
processed similarly as relevant and irrelevant dimensions. Specifically, 
this allows us to examine whether the processing of one format activates 
the processing of the other format. Additionally, we examine how nu
merical distance influences the processing of symbols compared to 
quantities. Finally, we assess whether differences in the processing of 
symbols and quantities are driven by quantities in the counting range, 
rather than the subitizing range. This study identifies whether there is an 
asymmetry in the processing magnitudes of different number formats. 

H.M. Sokolowski et al.                                                                                                                                                                                                                         
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2. Experiment 1 

2.1. Experiment 1: introduction 

In our first experiment, we adapt the famous colour Stroop paradigm 
(Stroop, 1935) to measure how individuals process symbols and quan
tities acting as the relevant and irrelevant dimensions, within the same 
task. Stroop paradigms have been widely used in psychology to examine 
the degree to which an irrelevant stimulus influences the processing of a 
relevant stimulus. The original Stroop effect revealed that participants 
are slower and less accurate at naming a font colour of a printed word if 
the meaning of the word and font colour conflict (Stroop, 1935). More 
specifically, participants were slower and less accurate at identifying 
that the font colour of a word if the font colour is different from the 
semantic meaning of the printed word (e.g., the word ‘red’ printed in a 
green font). 

Previous research studies have used Stroop-like tasks to assess the 
automatic processing of symbolic numbers (Henik & Tzelgov, 1982; 
Naparstek et al., 2015; Pansky & Algom, 2002). As discussed above, the 
Numerical Stroop Task, a task that requires participants to judge which 
of two digits (e.g., 3 vs 5) was larger either in physical size or in nu
merical magnitude, is the most widely used assessment of the automatic 
influence of symbols on judgments of the non-numerical magnitude, 
physical size. Results revealed that judgments of physical size were 
faster than judgments of symbols, suggesting that participants are more 
efficient at processing the relevant dimension when it is size compared 
to symbolic numerical magnitudes. However, physical size judgments 
were affected by the numerical magnitude of the symbol. Moreover, the 
degree to which the numerical magnitude of the symbol influenced the 
processing of the physical size was associated with numerical distance. 
Specifically, physical size judgments were more influenced by symbolic 
numerical pairs with relatively larger numerical distances. Therefore, in 
the same way that larger numerical magnitudes are more obvious when 
comparing two magnitudes with a large numerical distance, larger nu
merical distances between two irrelevant numerical magnitudes make 
the automatic influence of the irrelevant dimension more salient. This 
indicates that numerical distance is automatically processed, even when 
it is irrelevant, to form the judgment of which of two symbols is physi
cally larger. This finding has been taken to suggest that physical size and 
the semantic meaning of the symbolic numerical magnitudes are pro
cessed in parallel. Other research that has examined the automatic 
processing of symbols and quantities presented participants with a sin
gle array containing a quantity of symbols (e.g., a single array con
taining six of the symbolic Arabic digit ‘7’). Participants were instructed 
to compare either the symbol in the array or the quantity of symbols in 
the array to the number five (comparison task) or to indicate if the 
numerical magnitude was an even or odd number (parity task) 
(Naparstek & Henik, 2010). Results revealed that symbols influenced 
the processing of quantities for both the comparison and parity tasks, 
whereas quantities only influenced the processing of symbols on the 
comparison task. This suggests that symbols may be processed more 
automatically than quantities. Critically, as Naparstek and colleagues 
included a single array of symbols (e.g., six of the symbol ‘7’), and asked 
participants to compare either the symbol or the quantity to the number 
five, both the symbol and quantity comparison task required partici
pants to hold the symbolic referent (‘five’) in their minds. Consequently, 
it is possible that the asymmetry between comparing symbols and 
quantities to the symbolic referent is due to the fact that, for quantity 
task, the participants were comparing between formats (i.e., nonsym
bolic to symbolic), whereas in the symbolic task, participants were 
comparing a symbol to a symbolic referent. Consequently, in the current 
study, we create a Symbolic-Nonsymbolic Stroop paradigm which al
lows us to examine how symbols and quantities influence each other, 
without requiring a transformation between formats. We also use this 
task to assess whether the influence of symbols and quantities on each 
other is symmetrically modulated by numerical distance. Unlike 

previous studies, the current study compares the processing of symbols 
to the processing of quantities in the subitizing range and the counting 
range separately, as well as together. Findings from the current study 
will illuminate whether the influence of symbols and quantities on each 
other is symmetrical and will, therefore, allow us to identify whether 
symbols and quantities are processed separately or in parallel, and with 
similar or distinct representational precision. These findings are 
important to identify whether symbols are processed using the ancient 
system that evolved to process nonsymbolic magnitudes, or if symbols 
are supported by a similar but ultimately distinct representational 
system. 

2.1.1. The Symbolic-Nonsymbolic Stroop Paradigm 
In the current study, we examined whether processing of symbolic 

numerical magnitudes (e.g., 3) is distinct from processing quantities (e. 
g., •••) using a novel Symbolic-Nonsymbolic Stroop paradigm. The 
stimuli in this paradigm consisted of two quantities of symbols (e.g., 
3333 vs. 444). The inclusion of two sets of symbols and quantities in all 
stimuli meant that we were able to not only assess effortful and auto
matic processing of symbols and quantities independently but also the 
influence that symbols and quantities have on each other. During this 
paradigm, participants were asked to compare adjacent arrays of num
ber symbols (e.g., 4444 vs 333) and indicate the side containing either 
the greater quantity of symbols (nonsymbolic task) or the side con
taining the numerically larger symbol (symbolic task). This means that 
symbolic and nonsymbolic numerical magnitude acted as both the 
relevant dimension (i.e., the dimension that the participant was 
instructed to attend to) and the irrelevant dimension (i.e., the dimension 
that the participant needed to ignore). There were congruent trials, 
where the larger symbolic and nonsymbolic numerical magnitude 
appeared on the same side of the screen (e.g., 333 vs. 4444), incongruent 
trials, where the larger symbolic and nonsymbolic numerical magnitude 
appeared on opposite sides of the screen (e.g., 3333 vs. 444), and neutral 
trials, where the irrelevant dimension was the same across both sides of 
the screen (e.g., 3333 vs. 333 for nonsymbolic; 333 vs. 444 for sym
bolic). In this task, the numerical distance between the numerical 
magnitudes being compared was systematically varied across trials. 
Additionally, follow-up analyses are included to compare the processing 
of symbols to quantities in the subitizing range and counting range, 
separately. This examination of the processing of symbols and quantities 
as the relevant and irrelevant dimensions using a Symbolic-Nonsymbolic 
Stroop paradigm holds promise to identify whether symbols are pro
cessed in the same way as quantities under different attentional condi
tions and to evaluate the influence of symbols and quantities on each 
other. 

In accordance with the large body of previous literature comparing 
effortful processing of symbols and quantities, we expect that partici
pants will either perform the same on the symbolic and nonsymbolic 
tasks or will perform better on the symbolic task. Additionally, we 
expect that the effortful processing of both symbols and quantities will 
be influenced by numerical distance, with participants performing bet
ter for trials with larger numerical distances. 

With respect to automatic processing, we hypothesize that partici
pants behaviour will fit one of the following three patterns  

1. Symbols and quantities will automatically influence each other to the 
same degree.  

2. Symbols will influence the processing of quantities more than 
quantities will influence the processing of symbols across numerical 
distances.  

3. Symbols will influence the processing of quantities across distance 
conditions, but quantities influence the processing of symbols in a 
distance dependent way. 

Finally, we predict that any differences observed between the pro
cessing of symbols and quantities will be more pronounced for 
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magnitudes in the counting range compared to those in the subitizing 
range. 

2.2. Experiment 1: method 

2.2.1. Participants 
Eighty healthy adult participants (Mage = 21.4, SDage = 3.01; 31 

males, 49 females) were recruited at the University of Western Ontario 
in London, Ontario. Participants provided written consent before 
participating in the study. The session took approximately two hours 
and participants were compensated $5 CAD per half-hour (average $20 
CAD total). All procedures were approved by the University of Western 
Ontario Non-medical Research Ethics Board. 

2.2.2. Materials 

2.2.2.1. Symbolic-Nonsymbolic Stroop Task. This task is comprised of 
two subtasks: the symbolic task and the nonsymbolic task. Stimuli for 
both subtasks were composed of two arrays of Arabic numerals 
(numbers 1 to 9) in a four by four array (see Fig. 1). An array contained a 
certain quantity of Arabic numerals (e.g., six ‘6’s). The remaining spaces 
in the array were filled with the star symbol (*) as has been done in 
previous research (Naparstek et al., 2015; Pansky & Algom, 2002), to 
control for continuous properties such as area (Leibovich & Henik, 
2013). Specifically, including ‘*’ in all spaces that did not contain a 
symbol allowed us to keep the total area of the numerical displays 
constant throughout all trials. Although this does not remove all asso
ciations between continuous properties and quantities (i.e., the pro
portion of spots filled by digits still changes based on quantity) it does 
control for salient continuous magnitudes that have been reported to 
significantly influence the processing of nonsymbolic numerical mag
nitudes, such as area, density, and convex hull (For review see: Henik 
et al., 2017; Henik et al., 2011; Leibovich & Henik, 2013; Leibovich 
et al., 2016). Twenty different versions of each array were generated 
using MATLAB to ensure that participants did not learn the position of 
the Arabic digits within the arrays. The stimuli were presented using 
OpenSesame (Mathôt et al., 2012), with a resolution of 800 × 600. The 
stimuli, code to create the stimuli, and the OpenSesame experiments 
(which include trial-lists), are publicly available at on the Open Science 
Framework (OSF) at https://osf.io/qyczk/. 

The participant performed both a symbolic comparison task and a 
nonsymbolic comparison task on all pairs of arrays. The task took par
ticipants approximately 20 min to complete (10 min for each task). The 

distinction between the symbolic task compared to the nonsymbolic task 
was that participants performed distinct kinds of magnitude compari
sons on the same set of stimuli. In the symbolic task, the participant had 
to indicate which array contained the numerical symbol with the larger 
magnitude. In the nonsymbolic task, the participant had to indicate 
which array contained the greater quantity of numerical symbols (five 
‘3’s vs. two ‘2’s). In the congruent condition, the larger symbol and the 
greater quantity appeared on the same side of the screen. In the incon
gruent condition, the side with larger symbol appeared opposite to the 
side with the greater quantity. Importantly, the participant was pre
sented with the same set of stimuli for the symbolic task and the 
nonsymbolic task for both the congruent and incongruent conditions. In 
the neutral condition, the irrelevant dimension was the same across both 
sides of the screen and depended on the condition. In the symbolic 
neutral condition, the two arrays contained different symbolic numbers, 
but the quantity of symbolic numbers was held constant between the 
stimuli and matched one of the two symbolic numbers. In the nonsym
bolic neutral condition, the quantity of the symbolic numbers in the two 
arrays was different, but both arrays contained the same symbolic 
numbers that were the same as one of the two quantities. In the 
congruent and incongruent conditions, the distance between the rele
vant dimension (i.e., what the participant is told to compare) and the 
irrelevant dimension (i.e., what the participant must ignore) was the 
same and ranged from 1 to 6, with 12 trials per distance. The distance 
between the relevant dimension in neutral condition was matched to the 
congruent and incongruent conditions, and the irrelevant dimension in 
the neutral condition was always 0. See Fig. 1 for examples of stimuli for 
congruent, incongruent, and neutral conditions for both the symbolic 
and nonsymbolic comparison task. 

Participants were randomly presented with two blocks of 216 trials 
(432 total trials) on the symbolic task and on the nonsymbolic task. Of 
the 216 trials, 72 stimulus pairs were congruent, 72 were incongruent, 
and the remaining 72 trials were neutral. Each of the 72 trials consisted 
of 12 trials at each of distance 1–6. Notably, only 108 of the 216 trials 
had unique number pairs. The other 108 trials had the same numbers as 
the original 108 trials, but the numbers appeared on opposite sides of the 
screen. The stimuli in the congruent and incongruent conditions were 
identical for the symbolic and the nonsymbolic comparison tasks. The 
stimuli for the neutral conditions differed between tasks because, in the 
neutral condition, the irrelevant dimension was controlled to have a 
distance of zero. Within a single trial, participants were presented with a 
fixation for 500 milliseconds (ms), then a blank screen for 300 ms. 
Following this, participants were presented with two arrays for 2000 ms 

Fig. 1. Examples of types of stimuli presented. For congruent and incongruent, the same stimuli were used for both the symbolic and the nonsymbolic comparisons. 
The stimuli for the neutral condition differed for the symbolic and the nonsymbolic comparison conditions. 
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or until a key response was made. Once the participant either made a key 
response or the 2000 ms was up a blank screen was presented for 500 
ms. See the OSF page at https://osf.io/qyczk/.F for a list of the trials. 

2.2.3. Procedure 
All included measures were obtained during a single session that 

took approximately two hours. During the session, participants 
completed a series of cognitive tasks including the Symbolic- 
Nonsymbolic Stroop Task (comprised of both the symbolic task and 
the nonsymbolic task). Only the results from the Symbolic-Nonsymbolic 
Stroop task are reported here. Participants viewed the stimuli on one of 
two identical Dell desktop machines that run Windows 8.1. Participants 
were seated roughly 60–70 cm from the screen, which was an 18.6 by 
12.1 in. flat-screen LCD monitor with 1680 × 1050 resolution. The 
Symbolic-Nonsymbolic Stroop Task was always given at the beginning 
of the session, but the order that participants completed the subtasks (i. 
e. the symbolic task and nonsymbolic task) was counterbalanced be
tween participants. Each sub-task (the symbolic task and nonsymbolic 
task) began with a practice block that randomly presented 5 of the 216 
stimuli. Feedback was given at the end of the practice block. Participants 
continued to the actual experiment if they correctly answered 4 out of 5 
practice trials (i.e., 80% correct) for each subtask. If the participant did 
not get at least 80% of the practice block correct the participant redid 
the practice block. The actual experiment for each sub-task was 
composed of two blocks (i.e. two blocks for the symbolic task and two 
blocks for the nonsymbolic task). The participants got one break be
tween the two blocks. In each block, all 216 stimuli were randomly 
presented once. 

2.2.4. Analysis 
Trials with an RT that were + or – 3SD from the mean of the trial type 

within an individual were considered outliers and removed. This 
resulted in <1% of the RT data being removed. Following this, the RTs 
for each trial were adjusted to reflect both the speed and accuracy of 
performance. Mean RTs and error rates were combined to produce an 
adjusted rt. using the following formula. 

Adjusted Response Time =
Mean Response Time

1 − Error Rate 

An adjusted response time (RT) allows for the RTs to remain un
changed on correct trials and increase proportionally with the number of 
errors. Adjusted RTs are often used in the literature (e.g., Sasanguie 
et al., 2012; Simon et al., 2008) as they account for both speed and 
accuracy. Recently, it has been noted that although adjusted rts do 
provide a better summary of the findings, these scores increase the 
variance of the measure, and therefore, it is necessary to further check 
the data to ensure that the pattern of results for the RT and accuracy is 
the same (Bruyer & Brysbaert, 2011). In the current study, each of the 
RT and accuracy produce the same pattern of results as the adjusted rt. 
Consequently, all results will be reported as adjusted rts. The raw data 
files are publicly available on the Open Science Framework (OSF) at htt 
ps://osf.io/qyczk/. 

A three-way repeated-measures analyses of variance (ANOVA) was 
conducted to examine the influence of three independent variables 
(task, congruency, distance) on adjusted rts from the Symbolic- 
Nonsymbolic Stroop task. Task included two levels (symbolic, 
nonsymbolic), congruity included three levels (congruent, neutral, 
incongruent), and distance included six levels (1, 2, 3, 4, 5, 6). All sta
tistical tests were carried out using a two-tailed test with an alpha of 
0.05. Effect sizes were estimated using partial η2. Mauchly's Test of 
Sphericity was significant for all main effects and interactions. There
fore, the Greenhouse-Geisser correction was used for all analyses. 
Descriptive statistics are reported in Table 1. 

2.3. Experiment 1: results 

The key result from this analysis is a significant three-way interac
tion between task, congruity, and distance, F(4.5, 357.1) = 34.51, p <
.001, η2 = 0.30 (Fig. 2 and Table 2). This significant three-way inter
action reveals a distance-dependent asymmetry in the influence of 
symbols and quantities on each other when acting as the irrelevant 
dimension, thus aligning with the third pattern of behaviour proposed in 
our hypothesis section. Specifically, symbols influence the processing of 
quantities across distances, whereas quantities influence the processing 
of symbols for trials with distances >1. 

For completeness, we report findings of main effects and two-way 
interactions. However, results of the main effects and two-way inter
action should be interpreted cautiously in view of the significant three- 
way interaction. The three main effects were statistically significant. 

Table 1 
Means and standard deviations (SD) for adjusted RTs for each condition in 
Experiment 1.    

Nonsymbolic task Symbolic task 

Congruity Distance Mean SD Mean SD 

Congruent  1  928.0  195.8  715.8  153.3  
2  761.6  164.9  651.6  132.7  
3  676.7  136.5  618.0  141.9  
4  620.8  128.4  590.8  136.5  
5  597.4  122.1  569.8  124.0  
6  575.9  104.1  561.6  123.5 

Neutral  1  1004.2  196.9  739.3  152.0  
2  815.8  161.5  680.1  140.6  
3  707.0  145.2  655.3  143.3  
4  650.6  125.0  627.4  134.8  
5  618.7  106.7  614.1  138.5  
6  594.9  109.3  603.9  126.0 

Incongruent  1  1174.3  264.3  762.5  155.1  
2  881.5  156.2  731.8  160.6  
3  777.5  140.0  718.6  151.7  
4  694.8  129.2  712.6  171.2  
5  662.1  127.8  699.4  164.8  
6  628.5  115.9  705.4  177.8  

Fig. 2. This figure depicts adjusted rts for symbolic (orange) and nonsymbolic 
(blue) tasks at each congruity condition (congruent (darkest), neutral (medium) 
and incongruent (lightest) across all six distances. Error bars represent standard 
error of the mean. This figure highlights that at large distances, adjusted rts for 
congruent, neutral and incongruent conditions differ significantly for both the 
symbolic and nonsymbolic tasks. However, at small distances, participants have 
higher adjusted rts (i.e., poorer performance) on the nonsymbolic task than the 
symbolic task and the difference between congruent, neutral, and incongruent 
is larger on the nonsymbolic than the symbolic task (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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These main effects of congruity and distance align with known effects, 
namely that participants exhibited the strongest performance on 
congruent trials and weakest on incongruent trials, F(1.34, 106.2) =
297.64, p < .001, η2 = 0.79, and that participant performance increased 
as distance increased F(2.4, 189.6) = 1006.90, p < .001, η2 = 0.93. The 
main of effect of task indicates that participants performed better on the 
symbolic compared to the nonsymbolic task, F(1, 79) = 49.97, p < .001, 
η2 = 0.39. A significant two-way interaction between task and distance 
illuminates that the enhanced performance on the symbolic compared to 
the nonsymbolic task was driven by trials with small distances (i.e., 
distances <4) F(2.2, 171.4) = 373.66, p < .001, η2 = 0.83, negating the 
likelihood participants perform better on the symbolic task simply 
because it does not require the estimation or counting of symbols. 
Notably, the two-way interaction between congruity and distance was 
also significant, F(4.2, 333.1) = 4.12, p < .01, η2 = 0.05, but uninfor
mative with respect to our hypotheses, as it collapses across symbolic 
and nonsymbolic number processing, thereby combining effects of the 
relevant and irrelevant dimensions for this interaction. The two-way 
interaction between task and congruity was not significant, F(1.4, 
106.7) = 0.19, ns, η2 = 0.002. 

The findings from this 3-way ANOVA included all single-digit nu
merical quantities (i.e. quantities one to nine). While this is helpful to 
understand these effects across the full range of single-digit numbers, 
small and large nonsymbolic numerical magnitudes are thought to be 
processed using distinct systems (Hyde, 2011), with small nonsymbolic 
numerical quantities being processed more similarly to symbols. 
Therefore, we include follow-up analyses in which we examine only 
trials where both the symbol and quantity in the subitizing range or in 
the counting range. 

2.4. Follow-up analyses: subitizing vs. count range 

Two additional three-way repeated-measures ANOVAs were run to 
examine the effect of task, congruity and distance on adjusted RT scores 
of 1) trials in the subitizing range (i.e., 36 trials out of the 216 trials per 
block) and 2) trials in the counting range (i.e., 48 trials out of the 216 
trials per block). Descriptive statistics for these analysis are reported in 
Table 3. 

2.4.1. Subitizing range 
The three-way interaction between task, congruity, and distance was 

significant for trials only in the subitizing range, F(3.0, 236.0) = 15.28, 
p < .001, η2 = 0.16, revealing that symbols interfered with processing 
nonsymbolic quantities across all distances, but nonsymbolic quantities 
interfered with processing symbols more in large distance conditions 
(Fig. 3, Table 4). Results of the main effects and two-way interactions 
should be interpreted cautiously in view of this significant three-way 
interaction. 

Significant main effects revealed that participants exhibited the 
strongest performance on congruent trials and weakest on incongruent 
trials, F(1.4, 110.3) = 105.96, p < .001, η2 = 0.58, participant perfor
mance increased as distance increased, F(1.8, 139.0) = 344.08, p < .001, 
η2 = 0.82 and participants performed better on the symbolic compared 
to the nonsymbolic task, F(1, 78) = 6.95, p < .05, η2 = 0.082. The sig
nificant two-way interaction between task and distance revealed that 
distance had a stronger effect on performance on the nonsymbolic task 
compared to the symbolic task F(1.8, 138.6) = 85.55, p < .001, η2 =

0.52. The two-way interactions between congruity and distance F(3.0, 
232.1) = 1.64, ns, η2 = 0.021, and task and congruity, F(1.5, 117.3) =
0.688, ns, η2 = 0.008, were not significant. 

Table 2 
Results of post-hoc pairwise comparisons with a Bonferroni for multiple comparisons with a critical p-value of p < .05 for the 3-way interaction (Task * Congruity * 
Distance) for Experiment 1. The mean difference is flagged with one star (*) if the corresponding p-value is < 0.05.  

Task Distance Congruity Mean Dif SE p-Value 

Nonsymbolic 1 Neutral vs Congruent  76.21*  15.28  <0.001 
Incongruent vs Congruent  246.39*  27.24  <0.001 
Incongruent vs Neutral  170.18*  26.47  <0.001 

2 Neutral vs Congruent  54.18*  9.70  <0.001 
Incongruent vs Congruent  119.90*  13.55  <0.001 
Incongruent vs Neutral  65.71*  12.64  <0.001 

3 Neutral vs Congruent  30.27*  5.98  <0.001 
Incongruent vs Congruent  100.83*  9.91  <0.001 
Incongruent vs Neutral  70.56*  10.57  <0.001 

4 Neutral vs Congruent  29.83*  5.87  <0.001 
Incongruent vs Congruent  73.98*  8.46  <0.001 
Incongruent vs Neutral  44.15*  6.74  <0.001 

5 Neutral vs Congruent  21.37*  5.44  <0.001 
Incongruent vs Congruent  64.70*  7.57  <0.001 
Incongruent vs Neutral  43.33*  7.26  <0.001 

6 Neutral vs Congruent  18.99*  3.59  <0.001 
Incongruent vs Congruent  52.66*  5.08  <0.001 
Incongruent vs Neutral  33.67*  4.33  <0.001 

Symbolic 1 Neutral vs Congruent  23.50  10.61  0.089 
Incongruent vs Congruent  46.70*  9.60  <0.001 
Incongruent vs Neutral  23.20  10.16  0.075 

2 Neutral vs Congruent  28.49*  6.27  <0.001 
Incongruent vs Congruent  80.21*  7.89  <0.001 
Incongruent vs Neutral  51.72*  9.81  <0.001 

3 Neutral vs Congruent  37.33*  4.86  <0.001 
Incongruent vs Congruent  100.61*  8.50  <0.001 
Incongruent vs Neutral  63.28*  7.90  <0.001 

4 Neutral vs Congruent  36.62*  6.30  <0.001 
Incongruent vs Congruent  121.81*  10.95  <0.001 
Incongruent vs Neutral  85.19*  9.03  <0.001 

5 Neutral vs Congruent  44.33*  5.31  <0.001 
Incongruent vs Congruent  129.60*  13.18  <0.001 
Incongruent vs Neutral  85.27*  12.25  <0.001 

6 Neutral vs Congruent  42.29*  5.61  <0.001 
Incongruent vs Congruent  143.79*  14.30  <0.001 
Incongruent vs Neutral  101.50*  12.43  <0.001  
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2.4.2. Counting range 
The three-way interaction between task, congruity, and distance was 

also significant for trials only in the counting range, F(2.8, 219.1) =
10.48, p < .001, η2 = 0.12, revealing that that at symbols interfered with 

nonsymbolic quantities across all distances, but nonsymbolic quantities 
interfered with symbols more in large distance conditions (Fig. 3, 
Table 4). Results of the main effects and two-way interaction should be 
interpreted cautiously in view of this significant three-way interaction. 

Unlike trials in the subitizing, range, the two-way interaction be
tween task and congruity was also statistically significant, F(1.7, 133.2) 
= 33.98, p < .001, η2 = 0.30 suggesting that, symbols may influence 
processing of quantities more than quantities influence processing of 
symbols, even when collapsing across distances for trials in the counting 
range. 

As with trials in the subitizing range, significant main effects 
revealed that participants exhibited the strongest performance on 
congruent trials and weakest on incongruent trials, F(1.7, 126.7) =
108.99, p < .001, η2 = 0.58, participant performance increased as dis
tance increased F(1.5, 121.6) = 315.22, p < .001, η2 = 0.80 and par
ticipants performed better on the symbolic compared to the 
nonsymbolic task, F(1, 79) = 263.49, p < .001, η2 = 0.77. The significant 
two-way interaction between task and distance showed that distance 
had a stronger effect on performance on the nonsymbolic task compared 
to the symbolic task, F(1.4, 110.0) = 219.54, p < .001, η2 = 0.74. The 
two-way interaction between congruity and distance, which is unin
formative with respect to our hypotheses as it collapses across task was 
also significant, F(2.6, 206.6) = 4.06, p < .05, η2 = 0.05. 

Together, these follow-up analyses align with our prediction that 
differences observed between the processing of symbols and quantities 
are more pronounced for magnitudes in the counting ranges, compared 
to those in the subitizing range. 

Table 3 
Means and standard deviations (SD) for adjusted RTs for each condition with trials in the subitizing range and the counting range in Experiment 1.  

Congruity Distance Nonsymbolic task Symbolic task 

Subitizing range trials Counting range trials Subitizing range trials Counting range trials 

Mean SD Mean SD Mean SD Mean SD 

Congruent 1  806.5  161.6  1094.7  303.2  724.7  148.8  712.4  197.1 
2  656.5  127.8  838.2  216.1  650.6  150.1  661.3  136.1 
3  608.3  129.5  719.6  165.8  609.1  142.0  629.2  167.9 

Neutral 1  856.1  167.7  1241.8  375.3  758.0  164.7  725.3  160.0 
2  691.2  128.5  914.4  229.4  681.4  157.5  689.2  145.1 
3  640.2  143.3  766.8  194.7  646.7  160.7  666.6  146.5 

Incongruent 1  991.9  230.9  1482.4  479.4  797.5  188.9  739.9  173.5 
2  726.6  142.8  998.4  212.9  756.8  193.8  732.7  173.9 
3  663.8  121.4  901.1  238.9  777.8  242.7  714.3  156.4  

Fig. 3. This figure depicts adjusted rt. for symbolic (orange) and nonsymbolic 
(blue) enumeration tasks for trials in the subitizing range and the count range 
when the symbolic and nonsymbolic stimuli are congruent (darkest), neutral 
(medium) and incongruent (lightest) across all three distances. The error bars 
represent standard errors. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Table 4 
Results of post-hoc pairwise comparisons with a Bonferroni for multiple comparisons with a critical p-value of p < .05 for the 3-way interaction (Task*Congruity*
Distance) for Experiment 1 for trials in the subitizing range and the counting range. The mean difference is flagged with one star (*) if the corresponding p-value is <
0.05.    

Subitizing range trials Counting range trials 

Task Distance Congruity Mean Dif SE p-Value Mean dif SE p-value 

Nonsymbolic 1 Neutral vs Congruent  49.14*  18.77  <0.05  147.06*  34.20  <0.001 
Incongruent vs Congruent  185.79*  25.71  <0.001  387.67*  53.48  <0.001 
Incongruent vs Neutral  136.66*  25.49  <0.001  240.61*  56.42  <0.001 

2 Neutral vs Congruent  34.92*  9.17  <0.001  76.25*  20.80  <0.001 
Incongruent vs Congruent  70.73*  13.63  <0.001  160.23*  23.37  <0.001 
Incongruent vs Neutral  35.81*  13.25  <0.05  83.98*  23.16  <0.001 

3 Neutral vs Congruent  31.30*  10.48  <0.05  47.17*  15.58  <0.01 
Incongruent vs Congruent  55.25*  14.38  <0.001  181.50*  20.30  <0.001 
Incongruent vs Neutral  23.95  14.52  0.31  134.33*  22.38  <0.001 

Symbolic 1 Neutral vs Congruent  33.64*  12.88  <0.05  12.93  16.36  1.00 
Incongruent vs Congruent  72.83*  14.51  <0.001  27.49  17.72  0.37 
Incongruent vs Neutral  39.19*  15.84  <0.05  14.55  16.34  1.00 

2 Neutral vs Congruent  30.49  12.60  0.054  27.92*  8.18  <0.001 
Incongruent vs Congruent  106.33*  17.09  <0.001  71.36*  11.43  <0.001 
Incongruent vs Neutral  75.84*  14.06  <0.001  43.45*  13.69  <0.01 

3 Neutral vs Congruent  36.61*  11.00  <0.001  37.45*  10.05  <0.001 
Incongruent vs Congruent  168.25*  25.19  <0.001  85.16*  12.16  <0.001 
Incongruent vs Neutral  131.67*  26.97  <0.001  47.71*  10.92  <0.001  
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In summary, the results from experiment 1 produce several key 
findings. First, as predicted, participants perform better when 
comparing symbols than comparing quantities when both are acting as 
the relevant dimension. In contrast to our prediction, the effortful pro
cessing of symbols is less affected by numerical distance compared to 
quantities. With respect to automatic processing, the results from 
experiment 1 align with the third potential pattern of behavioural re
sults, namely that symbols automatically influence the processing of 
quantities more than quantities influence the processing of symbols in a 
distance dependent manner. Specifically, symbols influence the pro
cessing of quantities across all numerical distances, whereas quantities 
influence the processing of symbols, particularly for large distance trials. 
Finally, the follow-up analyses reveal that the difference between the 
processing of symbols and quantities is greater when comparing symbols 
to quantities in the counting range, compared to the subitizing range. 
Together, these findings provide evidence to suggest that the systems 
used to process symbols and quantities are partially overlapping, as the 
irrelevant dimension influences the relevant dimension in both tasks. 
However, results indicate that the influence of the irrelevant dimension 
is asymmetrical between numerical formats with symbols influencing 
quantities more than the reverse. 

2.5. Experiment 2 

2.5.1. Experiment 2: introduction 
The follow-up analyses in experiment 1 examining the processing of 

symbols and quantities in the subitizing and the counting range revealed 
that symbols and quantities influence each other regardless of whether 
the stimuli are in the counting range or subitizing range, but the 
asymmetry between symbols and quantities is more pronounced for 
stimuli in the counting range. These findings support our hypothesis that 
quantities in the subitizing range would act more like symbols due to the 
fact that they can be processed exactly using a parallel individuation 
system. Critically, the stimuli in experiment 1 included all single-digit 
numerical magnitudes (i.e., quantities one to nine), with follow-up an
alyses examining specific trials that included only symbols and quanti
ties in the subitizing range or the counting range. It is possible that 
including subitizable quantities within this task biased participants to 
process quantities in a more exact way, thereby leading to greater in
fluence between symbols and quantities even within the counting range. 
In other words, results from experiment 1, suggesting that symbolic and 
nonsymbolic numerical magnitudes influence each other during the 
Stroop task, could be driven by quantities in the subitizing range. In 
order to confirm that the Stroop effect (i.e., the finding that symbolic 
and nonsymbolic numerical magnitudes influence each other) is not 
simply due to the fact that quantities in the subitizing range are acti
vating exact symbolic representations throughout the task it is critical to 
replicate this paradigm using only numbers in the counting range. 
Therefore, in experiment 2, an independent sample of participants 
completed a modified version of the Symbolic-Nonsymbolic Stroop task 
that included only numbers in the counting range (i.e., 5–9). We hy
pothesize that the differences between the automatic processing of 
symbols and quantities observed in experiment 1 will be stronger in 
experiment 2. 

2.5.2. Experiment 2: method 

2.5.2.1. Participants. Sixty-three healthy adult participants were 
recruited at the University of Western Ontario in London, Ontario. Four 
participants were excluded from analyses due to poor accuracy (< 70 % 
on at least one trial type). Therefore, all analyses for experiment 2 
include 59 participants (Mage = 23.86, SDage = 3.79; 20 males, 39 fe
males). Participants provided written consent before participating in the 
study. The session took approximately one hour and participants were 
compensated $5 CAD per half-hour (average $10 CAD total). All 

procedures were approved by the University of Western Ontario Non- 
medical Research Ethics Board. 

2.5.3. Materials 

2.5.3.1. Symbolic-Nonsymbolic Stroop Task. Each participant completed 
both the symbolic and nonsymbolic version of the Symbolic- 
Nonsymbolic Stroop task with all the same parameters described in 
experiment 1. The trial-list for experiment 2 differed from experiment 1. 
Namely, the task only included both symbols and quantities in the 
counting range (5–9). As with experiment 1, the stimuli, code to create 
the stimuli, and the OpenSesame experiments, which include the trial- 
lists, are available at on the Open Science Framework (OSF) at htt 
ps://osf.io/qyczk/. This version of the task took participants approxi
mately 8 min to complete (4 min for each task). 

Participants were randomly presented with two blocks of 36 trials 
repeated twice each (144 total trials) on the symbolic task and on the 
nonsymbolic task. Of the 36 trials, 12 stimulus pairs were congruent, 12 
were incongruent, and the remaining 12 trials were neutral. Each of the 
12 trials consisted of 4 trials at each of distance 1–3. Notably, half of the 
36 trials, had the same numbers as the other half, but the numbers 
appeared on opposite sides of the screen. The stimuli in the congruent 
and incongruent conditions were identical for the symbolic and the 
nonsymbolic tasks. The stimuli for the neutral conditions differed be
tween tasks because, in the neural condition, the irrelevant dimension 
was controlled to have a distance of zero. For example, for the com
parison of two vs. six, in the symbolic neutral condition (illustrated in 
Fig. 1), a participant could be presented with two of the digit 2 vs. two of 
the digit 6 (as in Fig. 1) or with six of the digit 2 vs. six of the digit 6. In 
the nonsymbolic neutral condition, a participant could be presented 
with two of the digit 6 vs. six of the digit 6 (as in Fig. 1) or with two of the 
digit 2 vs. six of the digit 2. The version of neutral trial presented was 
counterbalanced across participants. Both version A and version B of the 
paradigm are available on the Open Science Framework (OSF) at htt 
ps://osf.io/qyczk/. 

2.5.4. Procedure 
All included measures were obtained during a single session that 

took approximately one hour, where participants completed a series of 
basic number processing tasks including the Symbolic-Nonsymbolic 
Stroop tasks with numbers only on the counting range. Only the re
sults from the counting Symbolic-Nonsymbolic Stroop task are reported 
here. The procedure is the same as for experiment 1 with the exception 
that participants were randomly presented with two blocks containing 
the same 36 trials for each task. The participants got one break between 
the two blocks. 

2.6. Experiment 2: results 

As reported in experiment 1, the RT and accuracy produce the same 
pattern of results as the adjusted rt for experiment 2. Consequently, all 
results will be reported as adjusted rts. As with experiment 1, the raw 
data files for experiment 2 are publicly available on the Open Science 
Framework (OSF) at https://osf.io/qyczk/. 

A three-way repeated-measures analyses of variance (ANOVA) was 
conducted to examine the influence of three independent variables 
(task, congruency, distance) on adjusted rts from the Symbolic- 
Nonsymbolic Stroop task. Task included two levels (symbolic, 
nonsymbolic), and congruity included two levels (congruent, neutral, 
incongruent), and distance included three levels (1, 2, 3). Descriptive 
statistics for each condition are reported in Table 5. All statistical tests 
were carried out using a two-tailed test with an alpha of 0.05. Effect sizes 
were estimated using partial η2. Mauchly's Test of Sphericity was sig
nificant for the main effect of distance, and the following interactions: 
task*distance, congruity*distance, task*congruity*distance. The 
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Greenhouse-Geisser correction was used for all analyses that violated 
the assumption of sphericity. 

As with experiment 1, the three-way interaction between task, con
gruity, and distance was used to examine whether there were differences 
in the congruity effects between tasks and whether these differences 
were modulated by numerical distance. Unlike the results from experi
ment 1, the three-way interaction between task, congruity, and distance, 
was not significant in experiment 2 F(2.4, 136.2) = 2.36, ns, η2 = 0.04. 
However, in experiment 2, the two-way interaction between task and 
congruity was significant, F(2, 116) = 26.09, p ≤0.001, η2 = 0.31, 
revealing that symbols influence the processing of quantities more than 
quantities influence processing of symbols, across all distances (Fig. 4, 
Table 6). These findings align with the second behavioural pattern 
predicted in our hypothesis section, namely that symbols influence the 
processing of quantities more than quantities influence the processing of 
symbols regardless of numerical distance. 

As with experiment 1, the three main effects were statistically sig
nificant, revealing that participants performance was strongest on 
congruent trials and weakest on incongruent trials, F(1.8, 106.9) =
59.18, p < .001, η2 = 0.5, performance was better on trials with larger 
distances, F(1.6, 94.0) = 297.73, p < .001, η2 = 84, and participants 
performed better on the symbolic compared to the nonsymbolic task, F 
(1, 58) = 553.52, p < .001, η2 = 0.91. The significant two-way 

interaction between task and distance, F(1.5, 84.2) = 213.72, p <
.001, η2 = 0.79 revealed that distance had a stronger effect on perfor
mance on the nonsymbolic task compared to the symbolic task, as 
discovered in experiment 1. The uninformative two-way interaction 
between congruity and distance was not significant in experiment 2, F 
(2.3, 134.6) = 1.33, ns, η2 = 0.02. 

Together, these results converge with results from experiment 1 to 
suggest that symbolic numerical magnitudes are processed more effi
ciently and are less affected by numerical distance, compared to 
nonsymbolic numerical magnitudes. 

2.6.1. Bayesian analyses 
We ran Bayesian analyses using JASP (JASP Team, 2022) to quantify 

evidence supporting the null and alternative hypotheses for the three- 
way interaction between task, congruity and distance in experiment 2 
(Benjamin et al., 2018; Rouder et al., 2009; Wagenmakers, 2007). We 
first ran a Bayesian ANOVA, with default priors (i.e., an effect size of 
0 for the null hypothesis and a Cauchy distribution prior centered on the 
null with a width of 0.707 for the alternative hypothesis; Rouder et al., 
2012), to identify whether there is stronger evidence for the alternative 
or null hypothesis for each model within the ANOVA (Table 7). We 
interpret the results using Bayes Factors (BF) as they provide an index of 
the strength of the evidence for the alternative hypothesis (BF10). 

The BF10 statistics revealed strong evidence against the null hy
pothesis for all main effects and interaction terms of the ANOVA 
(Table 7), thereby providing support for the alternative hypothesis, 
rather than the null hypothesis for all models in the ANOVA. 

In view of the frequentist statistic finding that the three-way inter
action between task, congruity and distance was not significant, coupled 
with the finding there is stronger evidence supporting the alternative 
hypothesis for all models, we conducted a model comparison analysis 
(comparing the BF10 statistics from model 18 and model 19 from 
Table 7) to examine whether the addition of the three-way interaction 
improved the model. Quantitative comparison of the BF10 statistics for 
these models revealed that the probability of the model that does not 
contain the three-way interaction (Model 18) is 7.85 times more likely 
than the model that does contain the three-way interaction (Model 19), 
given the data. This suggests that the non-significant three-way inter
action between task, congruity, and distance, in experiment 2 (using 
frequentist statistics) reflects a true null result. Therefore, we conclude 
that, for magnitudes in the counting range, symbols influence the pro
cessing of quantities more than quantities influence the processing of 
symbols, regardless of the numerical distance of the quantities being 
compared. 

3. Discussion 

A fundamental question in the field of numerical cognition concerns 
whether symbolic numbers are processed in the same way as nonsym
bolic numerical magnitudes. To address this question, we developed and 
used a Symbolic-Nonsymbolic Stroop paradigm to assess the processing 
of symbolic and nonsymbolic numbers acting as the relevant and irrel
evant dimension. By examining whether nonsymbolic and symbolic 
representations influence one another we can probe how strongly they 
are linked. If they are strongly linked, then processing one should acti
vate the other. If, however, they are disconnected then they should not 
influence each other, or the influence should be asymmetrical. In the 
Symbolic-Nonsymbolic Stroop paradigm we used to probe these possi
bilities, participants were asked to compare adjacent arrays of symbols 
(e.g., 4444 vs 333) and instructed to indicate the side containing either 
the greater quantity of symbols (nonsymbolic task) or the side con
taining the symbol with the greater numerical magnitude (symbolic 
task). More specifically, this paradigm evaluates both processing of the 
relevant dimension (i.e., the dimension the participant is instructed to 
attend to) as well as the degree to which the irrelevant stimulus condi
tion influences judgments being made on the relevant condition. For 

Table 5 
Means and standard deviations (SD) for adjusted RT for each condition in 
Experiment 2.    

Nonsymbolic task Symbolic task 

Congruity Distance Mean SD Mean SD 

Congruent  1  1324.8  336.5  666.0  144.9  
2  1000.8  243.6  619.1  136.0  
3  880.8  170.9  606.8  113.7 

Neutral  1  1421.7  441.5  689.4  149.1  
2  1054.4  212.7  642.2  133.8  
3  932.2  181.3  620.3  126.0 

Incongruent  1  1604.1  406.6  699.7  152.0  
2  1159.7  258.7  663.8  186.5  
3  1031.1  176.0  649.8  135.1  

Fig. 4. This figure depicts adjusted rts for symbolic (orange) and nonsymbolic 
(blue) Stroop tasks when the symbolic and nonsymbolic stimuli are congruent 
(darkest), neutral (medium) and incongruent (lightest) across all three dis
tances. Error bars represent standard error. This figure highlights that partici
pants have higher adjusted rts (i.e., poorer performance) on the nonsymbolic 
task than the symbolic task and the difference between congruent, neutral, and 
incongruent is larger on the nonsymbolic than the symbolic task, across all 
numerical distances. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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example, when comparing which side contains the numerically larger 
symbol (i.e., the relevant dimension), does the actual number of symbols 
present (i.e., the irrelevant dimension) influence performance? Using 
this approach, we found that participants had a faster adjusted RT when 
comparing symbolic numerical magnitudes than when comparing 
nonsymbolic numerical magnitudes, which suggests that symbols are 
processed more automatically as both the relevant and the irrelevant 
dimensions. 

Indeed, across conditions, participants performed better (i.e., 
responded faster and more accurately) on the symbolic task compared to 
the nonsymbolic task. This suggests that as the relevant dimension, 
symbols are processed more efficiently. Additional asymmetries were 
observed through much stronger distance effects during nonsymbolic 
judgments compared to symbolic judgments, especially when compari
sons were made in the counting range. Critically, unlike other para
digms, this task has the capacity to examine automaticity of processing 
symbolic and nonsymbolic numerical magnitudes when these number 
formats act as the irrelevant dimensions. By including a neutral condi
tion in our task, we were able to measure the extent to which the 
irrelevant dimension either helped (facilitated) or hindered (interfered) 

task performance on the relevant dimension. Our findings revealed an 
asymmetry in the interference and facilitation patterns of symbolic 
compared to nonsymbolic numerical judgments. Symbols, as compared 
to nonsymbolic numerical magnitudes, led to both greater facilitation 
and interference effects. Notably, when including trials in both the 
subitizing and counting range, as was the case in experiment 1, this 
asymmetry in the congruity effects between the symbolic and nonsym
bolic task is stronger for trials with small distances. A comparison of 
trials in the subitizing vs. counting ranges separately supported our 
prediction that quantities in the subitizing range are processed more 
similarly to symbols than quantities in the counting range. Taken 
together, our findings demonstrate that symbolic numerical magnitudes 
are processed more efficiently than nonsymbolic numerical magnitudes 
as both the relevant and irrelevant dimensions. In what follows, we 
discuss how this finding indicates asymmetric processing of symbolic 
and nonsymbolic numerical magnitudes and suggest differences in the 
ways in which each format is processed and potentially represented. 

3.1. Congruity effects 

Regardless of condition (i.e., making symbolic or nonsymbolic 
comparisons), participants were faster and more accurate at making 
comparisons when the two stimulus dimensions were congruent 
compared to when they were incongruent with each other. Furthermore, 
in the neutral condition, participants' performance was in between that 
obtained from the other two conditions, suggesting that congruent 
conditions facilitate performance and incongruent conditions interfere 
with performance. These findings are noteworthy in that they show the 
powerful effect of the irrelevant stimulus on one's ability to make basic 
numerical judgments. One interpretation of these findings is that sym
bolic and nonsymbolic numerical magnitudes are processed in parallel 
and potentially under the same regulatory system (e.g., see Henik & 
Tzelgov, 1982). Applying this line of reasoning to the current study, if 
symbolic and nonsymbolic numerical magnitudes bore no relation to 
one another and were processed by independent systems entirely, one 
would not expect to find evidence of facilitation or interference effects. 
In other words, if symbolic and nonsymbolic numbers were processed 
using two entirely distinct systems there would not be a Stroop-effect. 
Therefore, our findings provide some evidence of parallel or simulta
neous processing of symbolic and nonsymbolic magnitudes. However, 
these findings should be interpreted with caution in light of the many 
significant interactions discussed below. Nonetheless, these findings 
align with a large body of theory and empirical findings demonstrating a 
close relation between number symbols and the nonsymbolic numerical 
magnitudes they represent (e.g., Cantlon et al., 2009; Dehaene, 2007; 
Dehaene et al., 1998; Nieder & Dehaene, 2009; Piazza et al., 2007). 

However, our findings also challenge this line of research and instead 
suggest that there are key differences in the ways symbolic and 
nonsymbolic numerical magnitudes are processed. Indeed, our results 
revealed that in comparison to nonsymbolic numerical magnitudes, 
number symbols (i) were processed more efficiently (i.e., faster and 
more accurately) as the relevant dimension, (ii) had a greater influence 
on task performance as the irrelevant dimension, and (ii) were less 
influenced by the numerical distance between magnitudes as the rele
vant and irrelevant dimension. Notably, distance only moderated the 

Table 6 
Results of Post-hoc Pairwise Comparisons with a Bonferroni for Multiple Comparisons with a critical p-value of p < .05 for the 2-way Interaction between Task and 
Congruity for Experiment 2. The mean difference is flagged with one star (*) if the corresponding p-value is < 0.05.  

Task Congruity Mean Dif SE p-Value 

Nonsymbolic Neutral vs Congruent  67.267*  19.35  <0.01 
Incongruent vs Congruent  196.158*  23.35  <0.001 
Incongruent vs Neutral  128.891*  21.40  <0.001 

Symbolic Neutral vs Congruent  20.012*  4.06  <0.001 
Incongruent vs Congruent  40.455*  5.95  <0.001 
Incongruent vs Neutral  20.442*  5.38  <0.01  

Table 7 
Models of the Bayesian ANOVA conducted for Experiment 2 with Bayes Factors 
that assess the strength of the evidence for the alternative hypothesis (BF10).   

ANOVA model BF10 

1 Null model (incl. subject) 1 
2 Task 1.487e +

170 
3 Congruity 258.499 
4 Task + Congruity 8.120e +

177 
5 Task + Congruity + Task ✻ Congruity 3.793e +

180 
6 Distance 6.302e +25 
7 Task + Distance 7.207e +

234 
8 Congruity + Distance 6.418e +28 
9 Task + Congruity + Distance 1.646e +

246 
10 Task + Congruity + Task ✻ Congruity + Distance 3.943e +

250 
11 Task + Distance + Task ✻ Distance 7.944e +

287 
12 Task + Congruity + Distance + Task ✻ Distance 2.163e +

303 
13 Task + Congruity + Task ✻ Congruity + Distance + Task ✻  

Distance 
4.984e +
309 

14 Congruity + Distance + Congruity ✻ Distance 2.874e +26 
15 Task + Congruity + Distance + Congruity ✻ Distance 1.916e +

244 
16 Task + Congruity + Task ✻ Congruity + Distance + Congruity 

✻ Distance 
4.678e +
248 

17 Task + Congruity + Distance + Task ✻ Distance + Congruity 
✻ Distance 

4.432e +
301 

18 Task + Congruity + Task ✻ Congruity + Distance + Task ✻  
Distance + Congruity ✻ Distance 

9.590e +
307 

19 Task + Congruity + Task ✻ Congruity + Distance + Task ✻  
Distance + Congruity ✻ Distance + Task ✻ Congruity ✻  
Distance 

1.221e +
307  

H.M. Sokolowski et al.                                                                                                                                                                                                                         



Acta Psychologica 228 (2022) 103644

11

relationship between task and congruity when including all numbers 
from 1 to 9, but not when only examining numbers in the counting 
range. We now address each one of these points in turn and discuss the 
findings in terms of evidence of asymmetrical processing of symbolic 
and nonsymbolic numerical magnitudes. 

3.2. Effects of the relevant dimension 

Overall, participants performed better (i.e., were more efficient) 
comparing symbols than quantities, as predicted. Although other re
searchers have reported similar findings (e.g., see Buckley & Gillman, 
1974), this is the first study to do so within the context of a Symbolic- 
Nonsymbolic Stroop paradigm, where the task-irrelevant influence of 
one dimension on the other dimension (e.g., symbolic on nonsymbolic) 
can be measured. In fact, our results run counter to findings from the 
standard Numerical Stroop paradigm produces a size-congruity effect. 
Recall that the standard paradigm has participants compare Hindu- 
Arabic digits based on either the physical size of the numerals (e.g., 3 
vs. 5) or the numerical value. Results from this paradigm show that 
participants are faster at judging physical size and are less influenced by 
the symbolic value of the digits than the size. The most straightforward 
explanation for the discrepancy in findings is that in our task the 
nonsymbolic condition involves serial processing of discrete units (i.e., 
the total number of number symbols present). Conversely, the symbolic 
task can be approached by attending to a single unit (i.e., any given 
symbol present). Thus, both the physical size and symbolic task within 
the traditional Numerical Stroop paradigm is more akin to our symbolic 
task in which comparisons can be made by attending to a single stim
ulus. This discrepancy between the current study and previous Numer
ical Stroop paradigms that produce a size congruity effect provides 
evidence in support of the notion that the quantity discrimination task in 
the Symbolic-Nonsymbolic Stroop paradigm is capturing more than the 
processing of continuous magnitudes (e.g., area), an inherent confound 
of nonsymbolic number comparison tasks (For review see, Leibovich & 
Henik, 2013). If participants were solving the nonsymbolic task in the 
current study using purely a physical size strategy, one would predict 
that the results would closely mirror the Size Congruity Effect, namely 
that like participants are better at processing size than symbols. As such, 
participants would be more efficient at processing nonsymbolic nu
merical magnitudes compared to symbols. However, we presented the 
quantities within an array in try to ensure that participants could not use 
a physical size strategy, thereby forcing them to rely on quantity. In 
doing this, we find the reverse pattern of results from the Size Congruity 
Effect, namely that as the relevant dimension, symbols are processed 
more efficiently than nonsymbolic numerical magnitudes. Although the 
finding that humans are better at effortfully processing symbols 
compared to quantities is neither new (e.g., Buckley & Gillman, 1974; 
Lyons & Ansari, 2009), nor surprising, it highlights the general effi
ciency and cultural utility of symbols and number symbols more spe
cifically (see Núñez, 2017). 

3.3. Effects of the irrelevant dimension 

As previously discussed, results revealed a congruity effect (i.e., 
greater efficiency in processing congruent compared to incongruent 
trials) in both the symbolic and nonsymbolic comparison conditions. 
Indeed, participant's performance on comparisons in both the symbolic 
task and the nonsymbolic task was most efficient when the two stimulus 
dimensions were congruent, followed by when they were neutral, and 
participants performance was worst on incongruent conditions. There
fore, both symbols and the nonsymbolic numerical magnitudes that they 
represent are processed as the irrelevant dimension and influence 
number processing of the relevant dimension. As discussed above, the 
findings that the irrelevant stimulus influences the relevant stimulus 
provide support for the idea that there is some parallel processing of 
symbols and quantities, as there would be no effect of the irrelevant 

stimulus on the relevant stimulus (i.e., no Symbolic-Nonsymbolic Stroop 
effect) if symbolic and nonsymbolic numerical magnitudes were pro
cessed in serial or using two entirely distinct systems. Therefore, the 
presence of a Stroop effect in the current study supports the idea that 
symbolic and nonsymbolic numerical magnitudes are processed simul
taneously at some stage of processing. 

Critically, however, our results also revealed important differences 
in how symbols influenced and interfered with judgments of nonsym
bolic numerical magnitudes compared to the way that nonsymbolic 
numerical magnitudes influenced and interfered with symbolic judg
ments. That is, irrelevant number symbols were found to have a much 
larger impact on performance compared to when nonsymbolic numer
ical magnitudes acted as the irrelevant dimension. Although many 
studies have reported that symbols influence the processing of quantities 
(Bush et al., 1998; Francolini & Egeth, 1980; Morton, 1969; Pavese & 
Umiltà, 1998, 1999; Windes, 1968), relatively few have examined 
whether quantities interfere with symbolic processing (Flowers et al., 
1979; Furman & Rubinsten, 2012; Naparstek et al., 2015; Naparstek & 
Henik, 2010, 2012; Pansky & Algom, 2002). The only other study to 
quantify both symbolic and nonsymbolic interference required partici
pants to compare a quantity to a symbolic referent (Naparstek & Henik, 
2010). This study revealed that symbols interfered with quantity pro
cessing regardless of task demands, whereas the interference of quantity 
depended on the task. Results from the current study extend finding this 
to reveal that this asymmetry in the processing of symbols and quantities 
as the irrelevant dimension is present even in a task that does not require 
the participant to compare the nonsymbolic numerical magnitude to a 
symbolic referent. Therefore, findings from the current study align with 
previous research to suggest that while there is some overlap in the way 
that symbolic and nonsymbolic numerical magnitudes are processed, 
symbols seem to more consistently influence the processing of 
nonsymbolic numerical magnitudes. 

3.4. Influence of numerical distance 

As discussed above, participants perform better on comparative 
judgments of symbolic compared to nonsymbolic numerical magnitudes 
across all distances. However, results from the current study also high
light that in addition to symbols being processed more efficiently than 
nonsymbolic numerical magnitudes, the effortful processing of symbols 
is less influenced by numerical distance. This finding from the current 
study, namely, that nonsymbolic processing is more influenced by dis
tance than symbolic number processing has been previously reported in 
the literature in both adults and children (e.g., Buckley & Gillman, 1974; 
Butterworth, 2005; Furman & Rubinsten, 2012; Holloway et al., 2010; 
Holloway & Ansari, 2008, 2009; Holloway & Ansari, 2010; Moyer & 
Landauer, 1967; Rubinsten et al., 2002). 

Several models for this discrepancy of the effect of numerical dis
tance on the processing of symbols and quantities have been proposed. A 
seminal computational model was put forward that suggests that sym
bolic and nonsymbolic numerical magnitudes are transformed into 
cardinal representation (i.e., place-coded) by different pathways (Ver
guts & Fias, 2004). Specifically, nonsymbolic numbers are transformed 
into cardinal representations through a noisy process referred to as 
‘summation coding.’ The noise in this process proportionally relates to 
the number of inputs being “summed.” In contrast, the summation step 
of this model is not required for processing symbolic numbers, leading to 
sharper representations for symbolic numbers and consequently a 
reduced reaction time and higher accuracy (Verguts & Fias, 2004). This 
computational model, which has been supported with empirical neu
roimaging data (Holloway et al., 2010; Lyons et al., 2014; Piazza et al., 
2007; Roggeman et al., 2007), provides a compelling explanation for the 
discrepancies found in the current data between the way that distance 
modulates the processing of symbolic compared to nonsymbolic nu
merical magnitudes as the relevant dimension. Notably, there are other 
explanations for the differences between the processing of symbolic and 
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nonsymbolic numerical magnitudes. Converging recent behavioural 
data has indicated that the similar behavioural effects observed in 
different formats of numerical magnitudes (i.e., symbolic and nonsym
bolic) do not correlate with each other (Holloway & Ansari, 2009; 
Krajcsi et al., 2016; Lyons et al., 2015), and may, in fact, be supported by 
two similar, but distinct representational systems. Indeed, while 
nonsymbolic numerical magnitudes are likely processed using an 
evolutionarily ancient analogue magnitude system, where the ratio of 
the stimuli's intensity affects performance (Weber's law) (Moyer & 
Landauer, 1967) the processing of symbols is likely supported by a 
different more exact system. A proposed system that may support 
symbolic numerical magnitudes is the discrete semantic system (DSS) 
(Krajcsi et al., 2016). In a DSS, symbolic numerical magnitudes are 
stored within a large semantic network, with each symbolic numerical 
magnitude acting as a node within that network. A DSS would produce a 
‘distance effect’ because the strength of the associations between sym
bolic numerical magnitudes (i.e., nodes) would correlate with the 
strength of the semantic relations between the numbers (Krajcsi, 2017; 
Krajcsi et al., 2016). Evidence that symbolic numerical magnitudes may 
be supported by a DSS rather than an approximate magnitude system 
has accumulated both behaviourally (Krajcsi et al., 2016, 2018) and at 
the neural level of analysis (Lyons & Beilock, 2018). Data from the 
current study cannot discern between various theories predicting what 
representations might underpin symbolic compared to nonsymbolic 
numerical magnitudes. However, these data do provide support for the 
growing body of evidence indicating that there are striking differences 
in the way that symbols and nonsymbolic numerical magnitudes are 
processed. 

The results from the current study provide some evidence to suggest 
that there may be an asymmetry between symbolic and nonsymbolic 
numerical magnitudes in the way that distance modulates the influence 
of the irrelevant dimension. In experiment 1, distance affects the influ
ence of irrelevant quantities during the symbolic comparison more than 
distance modulates the influence of irrelevant symbols during the 
nonsymbolic comparison task. More specifically, numerical distance 
most strongly affects the processing of symbolic numerical magnitudes 
when the magnitude of the symbol and the quantity are congruent, 
suggesting that the influence of the congruent quantity may, in fact, be 
responsible for the distance effect. Interestingly, previous research that 
has examined whether distance influences the performance on 
nonsymbolic naming tasks and tasks that require participant to refer to a 
symbolic referent revealed that when the symbols were numerically 
close to the quantity that the participants had to verbally name, there 
was a larger interference effect (Furman & Rubinsten, 2012; Naparstek 
& Henik, 2010, 2012; Pavese & Umiltà, 1998, 1999). Critically, in 
experiment 2 of the current study, where only numbers in the counting 
range were included, distance does not significantly modulate the 
automatic processing of symbols or nonsymbolic numerical magnitudes. 
The use of Bayesian statistics allows us to conclude that there is no ev
idence in support of the three-way interaction. More specifically, the 
Bayesian analyses that were conducted allowed us to quantify and 
compare the probabilities of different hypotheses (i.e., null or alterna
tive), given the data. The BF10 of the three-way interaction between task, 
congruity and distance was 7.85, which is considered to be moderate 
evidence for the alternative hypothesis. However, findings from the 
Bayesian model testing revealed that for experiment 2, the probability of 
the null hypothesis (i.e., the model without the inclusion of the three-way 
interaction) is stronger than the probability of the alternative hypothesis 
(i.e., the model with the inclusion of the three-way interaction), given 
the data. These model comparison findings suggest that statistically 
insignificant three-way interaction between task, congruity, and dis
tance was not significant due to lack of power, but instead reflects a true 
null finding. Therefore, we conclude that for numbers that are only in 
the counting range, symbols influenced the processing of quantities 
more than quantities influenced the processing of symbols across all 
distances. In view of this, the current data suggest that numerical 

distance does not influence the processing of the magnitude of the 
irrelevant dimension when including only numbers in the counting 
range. This finding provides further evidence that nonsymbolic nu
merical magnitudes do not influence the processing of numerical sym
bols. Indeed, even quantities with the strongest salience (i.e., quantities 
with large distances), in the counting range, do not influence effortful 
symbolic number processing. However, this should be interpreted with 
caution due to the fact that there is an inherent confound of including 
numbers only in the counting range, namely it narrows the range of 
possible numerical distances from six to three. Additionally, as this was 
the first time this task has been implemented, it was not possible to 
include all combinations of possible distances for both the relevant and 
irrelevant stimuli (e.g., see data of this nature from the size congruity 
task: Leibovich et al., 2013) However, even with these caveats, this 
research provides compelling evidence that symbols and quantities are 
processed using similar, but ultimately distinct processing systems. 

3.5. Subitizing vs. counting range 

Our final prediction was that differences observed between the 
processing of symbols and quantities would be more pronounced for 
magnitudes in the counting range compared to those in the subitizing 
range, because subitizable quantities can be processed exactly. Results 
from the current study revealed symbols influenced the processing of 
quantities more than quantities influenced the processing of symbols 
trials in the subitizing range and counting range. However, the 
discrepancy in mean differences between influence of symbols on 
quantities, compared to quantities on symbols, was nearly five times 
larger in the counting range compared to the subitizing range in 
experiment 2. This suggests that although the processing quantities in 
subitizing range is distinguishable from how we process symbols, we 
process symbols and quantities in a more similar way for magnitudes 
subitizing range compared to the counting range. These findings provide 
compelling evidence in support of the idea that nonsymbolic quantities 
are automatically processed using the PI system for small subitizable sets 
an analogue magnitude for larger sets (Hyde, 2011). 

3.6. Interpretations and future directions 

Taken together, our results provide strong evidence for asymmetrical 
processing of symbolic and nonsymbolic numerical magnitudes. Spe
cifically, when we process nonsymbolic numerical magnitudes, sym
bolic representations have an influence. However, when we process 
symbolic magnitudes, nonsymbolic representations of numerical mag
nitudes have a negligible effect. A predominant view in the field of 
numerical cognition has been that symbolic number representations are 
formed by simply attaching symbols to analogue nonsymbolic quantity 
representations (e.g., Cantlon, 2012; Dehaene, 2007, 2008; Feigenson, 
2007; Lyons & Ansari, 2009; Nieder & Dehaene, 2009; Piazza et al., 
2007). In recent years, it has been suggested that number symbols 
constitute a separate system in which processing symbols can be done 
independently from accessing nonsymbolic representations of the 
quantities the symbols represent. Instead, symbols may be understood 
based on their associations with other symbols (For a comprehensive 
review see, Núñez, 2017). This view has been supported by recent 
behavioural and neuroimaging research that reports that processing of 
symbolic numbers is at least somewhat distinct from processing quan
tities (Bulthé et al., 2014; Cohen Kadosh, 2008; Lyons et al., 2012, 2014; 
Lyons & Beilock, 2018). The finding from the current study, that sym
bols are processed more automatically than the quantities that they 
represent provides evidence that supports the notion that symbols may 
not simply be labels for pre-existing representations of quantities. 
Indeed, the findings from the current study suggest that the human mind 
does not need to access a representation of a nonsymbolic numerical 
magnitude to automatically process the semantic meaning of a number 
symbol, even when the symbol is irrelevant to the task. Instead, data 
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from the current study provides evidence in support of the theory that 
symbols may themselves be supported by culturally acquired automatic 
semantic representations (Lyons & Beilock, 2018; Núñez, 2017). This 
convergent body of evidence that suggests that adults process symbols 
more automatically than nonsymbolic numerical magnitudes, in
troduces an important developmental question. Namely, it is of great 
importance to learn how symbols are learned, and when in development 
symbols become automatic. A longstanding question in the field of nu
merical cognition has been, ‘how do symbols acquire meaning?’ How
ever, based on this data, an equally important follow-up question is 
‘when does the symbolic system become independent?’ The use of the 
Symbolic-Nonsymbolic Stroop task in a developmental sample is ideally 
suited to answer this question, as it can be used to illuminate how the 
representational precision (i.e., distance effects) of symbols and quan
tities at different levels of processing (i.e., effortful and automatic) 
change, and likely diverge, across developmental time. 

4. Conclusions 

In order to further our understanding of the association between 
evolutionary ancient, nonsymbolic representations of numerical mag
nitudes and culturally constructed symbolic representations, the current 
study examined whether the processing of symbols and quantities as the 
relevant and irrelevant dimensions are the same or distinct using a 
Symbolic-Nonsymbolic Stroop paradigm. Results revealed that regard
less of the task, participants were more efficient at making comparisons 
when the two stimulus dimensions were congruent compared to 
incongruent. This could be taken to suggest that at some stage of pro
cessing symbolic and nonsymbolic numbers are processed in parallel; 
however, due to the fact that the interaction terms are significant, this 
finding should be interpreted with caution. Interaction effects from the 
current study revealed asymmetries the processing of symbolic and 
nonsymbolic numerical magnitudes when each magnitude type is the 
relevant and irrelevant dimension. The key finding from the current 
study is that symbols influenced nonsymbolic numerical magnitude 
processing more than nonsymbolic numerical magnitudes influenced 
the processing of numerical symbols. This highlights that there is an 
asymmetry in the way that the human mind processes symbols and 
quantities. Further support for this idea that symbols and quantities are 
processed distinctly is that the effortful processing of symbols was more 
efficient and less affected by numerical distance than quantities. Addi
tionally, numerical distance modulated nonsymbolic interference more 
than it modulated symbolic interference when including all numbers 
(1–9). However, numerical distance did not influence the automatic 
interference of symbols or quantities when all numbers in the experi
ment were in the counting range. These data provide support for the idea 
that there is an asymmetry in the way that humans process symbolic 
compared to nonsymbolic numerical magnitudes, even when the 
magnitude is irrelevant to the task. Together, these findings, that sym
bols are processed more automatically than numerically equivalent 
nonsymbolic numerical magnitudes, suggest that processing symbols do 
not require accessing a representation of quantity. These findings 
contribute to efforts to forge a deeper understanding of how the mind 
forms a symbolic number processing system. 
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