20 research outputs found
Benzene degradation in a denitrifying biofilm reactor: activity and microbial community composition
Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than 14 years on benzene with nitrate as electron acceptor. We determined steady state degradation rates, microbial community composition dynamics in the biofilm, and the initial anaerobic benzene degradation reactions. Benzene was degraded at a rate of 0.15 μmol/mg protein/day and a first-order rate constant of 3.04/day which was fourfold higher than rates reported previously. Bacteria belonging to the Peptococcaceae were found to play an important role in this anaerobic benzene-degrading biofilm culture, but also members of the Anaerolineaceae were predicted to be involved in benzene degradation or benzene metabolite degradation based on Illumina MiSeq analysis of 16S ribosomal RNA genes. Biomass retention in the reactor using a filtration finger resulted in reduction of benzene degradation capacity. Detection of the benzene carboxylase encoding gene, abcA, and benzoic acid in the culture vessel indicated that benzene degradation proceeds through an initial carboxylation step.</p
The abundance of nitrogen cycle genes and potential greenhouse gas fluxes depends on land use type and little on soil aggregate size
Soil structure is known to influence microbial communities in soil and soil aggregates are the fundamental ecological unit of organisation that support soil functions. However, still little is known about the distribution of microbial communities and functions between soil aggregate size fractions in relation to land use. Thus, the objective of this study was to determine the gene abundance of microbial communities related to the nitrogen cycle and potential greenhouse gas (GHG) fluxes in six soil aggregate sizes (0–0.25, 0.25–0.5, 0.5–1.0, 1–2, 2–5, 5–10 mm) in four land uses (i.e. grassland, cropland, forest, young forest). Quantitative-PCR (Q-PCR) was used to investigate the abundance of bacteria, archaea and fungi, and functional guilds involved in N-fixation (nifH gene), nitrification (bacterial and archaeal amoA genes) and denitrification (narG, nirS, and nosZ genes). Land use leads to significantly different abundances for all genes analysed, with the cropland site showing the lowest abundance for all genes except amoA bacteria and archaea. In contrast, not a single land use consistently showed the highest gene abundance for all the genes investigated. Variation in gene abundance between aggregate size classes was also found, but the patterns were gene specific and without common trends across land uses. However, aggregates within the size class of 0.5–1.0 mm showed high bacterial 16S, nifH, amoA bacteria, narG, nirS and nosZ gene abundance for the two forest sites but not for fungal ITS and archaeal 16S. The potential GHG fluxes were affected by land use but the effects were far less pronounced than for microbial gene abundance, inconsistent across land use and soil aggregates. However, few differences in GHG fluxes were found between soil aggregate sizes. From this study, land use emerges as the dominant factor that explains the distribution of N functional communities and potential GHG fluxes in soils, with less pronounced and less generalized effects of aggregate size
Evaluating the transport behavior of DNA-tagged silica particle tracers in laboratory soil columns
DNA-tagged particle tracers have been the subject of several researches as a new tracer for hydrological applica-tions. This tracer potentially permits the production of a large number of identically transported but distinguishabletracers. Such technique facilitates multi-point and multi-time tracer experiments in a specific location withoutconfounding the signal of the different tracers. All of those potential benefits of DNA-tagged particles can effec-tively improve our understanding on contamination flow origin and its pathways in the subsurface environment
Water and health: From environmental pressures to integrated responses
Contains fulltext :
203940.pdf (publisher's version ) (Open Access
Refleksje na temat pracy autorstwa: Lewandowska, Krudysz, Spychała, autor: Kozioł M.
<p>This review relates to the work, which analyses the financial institution, non-profit organization and an institution which is none of the foregoing. Review aims to assess the substantive content and conclusions.</p
Benzene degradation in a denitrifying biofilm reactor : activity and microbial community composition
Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than 14 years on benzene with nitrate as electron acceptor. We determined steady state degradation rates, microbial community composition dynamics in the biofilm, and the initial anaerobic benzene degradation reactions. Benzene was degraded at a rate of 0.15 μmol/mg protein/day and a first-order rate constant of 3.04/day which was fourfold higher than rates reported previously. Bacteria belonging to the Peptococcaceae were found to play an important role in this anaerobic benzene-degrading biofilm culture, but also members of the Anaerolineaceae were predicted to be involved in benzene degradation or benzene metabolite degradation based on Illumina MiSeq analysis of 16S ribosomal RNA genes. Biomass retention in the reactor using a filtration finger resulted in reduction of benzene degradation capacity. Detection of the benzene carboxylase encoding gene, abcA, and benzoic acid in the culture vessel indicated that benzene degradation proceeds through an initial carboxylation step.</p
Evaluating the transport behavior of DNA-tagged silica particle tracers in laboratory soil columns
DNA-tagged particle tracers have been the subject of several researches as a new tracer for hydrological applica-tions. This tracer potentially permits the production of a large number of identically transported but distinguishabletracers. Such technique facilitates multi-point and multi-time tracer experiments in a specific location withoutconfounding the signal of the different tracers. All of those potential benefits of DNA-tagged particles can effec-tively improve our understanding on contamination flow origin and its pathways in the subsurface environment.Water Resource
Benzene degradation in a denitrifying biofilm reactor : activity and microbial community composition
Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than 14 years on benzene with nitrate as electron acceptor. We determined steady state degradation rates, microbial community composition dynamics in the biofilm, and the initial anaerobic benzene degradation reactions. Benzene was degraded at a rate of 0.15 μmol/mg protein/day and a first-order rate constant of 3.04/day which was fourfold higher than rates reported previously. Bacteria belonging to the Peptococcaceae were found to play an important role in this anaerobic benzene-degrading biofilm culture, but also members of the Anaerolineaceae were predicted to be involved in benzene degradation or benzene metabolite degradation based on Illumina MiSeq analysis of 16S ribosomal RNA genes. Biomass retention in the reactor using a filtration finger resulted in reduction of benzene degradation capacity. Detection of the benzene carboxylase encoding gene, abcA, and benzoic acid in the culture vessel indicated that benzene degradation proceeds through an initial carboxylation step.</p
Correlation of Dehalococcoides 16S rRNA and Chloroethene-Reductive Dehalogenase Genes with Geochemical Conditions in Chloroethene-Contaminated Groundwater â–¿ â€
Quantitative analysis of genes that code for Dehalococcoides 16S rRNA and chloroethene-reductive dehalogenases TceA, VcrA, and BvcA was done on groundwater sampled from 150 monitoring wells spread over 11 chlorinated ethene polluted European locations. Redundancy analysis was used to relate molecular data to geochemical conditions. Dehalococcoides 16S rRNA- and vinyl chloride (VC)-reductase genes were present at all tested locations in concentrations up to 106 gene copies per ml of groundwater. However, differences between and also within locations were observed. Variation in Dehalococcoides 16S rRNA gene copy numbers were most strongly correlated to dissolved organic carbon concentration in groundwater and to conditions appropriate for biodegradation of chlorinated ethenes (U.S. Environmental Protection Agency score). In contrast, vcrA gene copy numbers correlated most significantly to VC and chlorinated ethene concentrations. Interestingly, bvcA and especially tceA were more correlated with oxidizing conditions. In groundwater microcosms, dechlorination of 1 mM VC was correlated to an increase of vcrA and/or bvcA gene copies by 2 to 4 orders of magnitude. Interestingly, in 34% of the monitoring wells and in 40% of the active microcosms, the amount of individual VC-reductase gene copies exceeded that of Dehalococcoides 16S rRNA gene copies. It is concluded that the geographical distribution of the genes was not homogeneous, depending on the geochemical conditions, whereby tceA and bvcA correlated to more oxidized conditions than Dehalococcoides 16S rRNA and vcrA. Because the variation in VC-reductase gene numbers was not directly correlated to variation in Dehalococcoides spp., VC-reductase genes are better monitoring parameters for VC dechlorination capacity than Dehalococcoides spp