1,355 research outputs found

    Decadal link between longitudinal morphological changes in branching channels of Yangtze Estuary and movement of the offshore depo-center

    Get PDF
    In estuaries, the morphology of inland and offshore areas usually evolves synergistically. This study examines the decadal link between longitudinal changes in morphology of branching channels and movement of the offshore depo-center (where sediment deposition rate is maximum) of the Yangtze River estuary, under intense human interference. Integrated data analysis is provided on morphology, runoff discharge, and ebb partition ratio from 1950 to 2017. Channel-volume reductions and change rates between isobaths in branching channels reflect the impact of estuarine engineering projects. Ebb partition ratio and duration of discharge ≥ 60 000 m3 s-1 act as proxies for the water excavating force in branching channels and runoff intensity. It is found that deposition occurs in the lower/upper sub-reaches (or further downstream/upstream channels) of the inland north/south branching channels, and the offshore depo-center moves southward or southeastward, as runoff intensity grows; the reverse occurs as runoff intensity declines. This is because the horizontal circumfluence in the Yangtze estuary rotates clockwise as ebb partition ratios of the north/south branching channels increase/decrease for increasing runoff, and conversely rotates anticlockwise for decreasing runoff. Land reclamation activities, the Deepwater Channel Project, and the Qingcaosha Reservoir have impacted greatly on longitudinal changes of morphology in the North Branch and the South Passage and on ebb partition ratio variations in the North/South Channel and the North/South Passage. Dam-induced runoff flattening has enhanced deposition in the upper/lower sub-reaches of the north/south branching channels and caused northward movement of the offshore depo-center, except in areas affected by estuarine engineering projects. Dam-induced longitudinal evolution of branching channel morphology and offshore depo-center movement will likely persist in the future, given the ongoing construction of large cascade dams in the upper Yangtze and the completion of major projects in the Yangtze estuary

    Electric-field-induced alignment of electrically neutral disk-like particles: modelling and calculation

    Get PDF
    This work reveals a torque from electric field to electrically neutral flakes that are suspended in a higher electrical conductive matrix. The torque tends to rotate the particles toward an orientation with its long axis parallel to the electric current flow. The alignment enables the anisotropic properties of tiny particles to integrate together and generate desirable macroscale anisotropic properties. The torque was obtained from thermodynamic calculation of electric current free energy at various microstructure configurations. It is significant even when the electrical potential gradient becomes as low as 100 v/m. The changes of electrical, electroplastic and thermal properties during particles alignment were discussed

    Lower expression of inducible nitric oxide synthase and higher expression of arginase in rat alveolar macrophages are linked to their susceptibility to Toxoplasma gondii infection.

    Get PDF
    Rats are naturally resistant to Toxoplasma gondii infection, particularly the RH strain, while mice are not. Previous studies have demonstrated that inducible nitric oxide synthase (iNOS) and arginase-1 of rodent peritoneal macrophages are linked to the mechanism of resistance. As an increasing number of studies on human and animal infections are showing that pulmonary toxoplasmosis is one of the most severe clinical signs from T. gondii infection, we are interested to know whether T. gondii infection in alveolar macrophages of rats is also linked to the levels of iNOS and arginase-1 activity. Our results demonstrate that T. gondii could grow and proliferate in rat alveolar macrophages, both in vitro and in vivo, at levels higher than resistant rat peritoneal macrophages and at comparable levels to sensitive mouse peritoneal macrophages. Lower activity and expression levels of iNOS and higher activity and expression levels of arginase-1 in rat alveolar macrophages were found to be linked to the susceptibility of T. gondii infection in these cells. These novel findings could aid a better understanding of the pathogenesis of clinical pulmonary toxoplasmosis in humans and domestic animals

    Curlometer technique and applications

    Get PDF
    We review the range of applications and use of the curlometer, initially developed to analyze Cluster multi-spacecraft magnetic field data; but more recently adapted to other arrays of spacecraft flying in formation, such as MMS small-scale, 4-spacecraft configurations; THEMIS close constellations of 3–5 spacecraft, and Swarm 2–3 spacecraft configurations. Although magnetic gradients require knowledge of spacecraft separations and the magnetic field, the structure of the electric current density (for example, its relative spatial scale), and any temporal evolution, limits measurement accuracy. Nevertheless, in many magnetospheric regions the curlometer is reliable (within certain limits), particularly under conditions of time stationarity, or with supporting information on morphology (for example, when the geometry of the large scale structure is expected). A number of large-scale regions have been covered, such as: the cross-tail current sheet, ring current, the current layer at the magnetopause and field-aligned currents. Transient and smaller scale current structures (e.g., reconnected flux tube or dipolarisation fronts) and energy transfer processes. The method is able to provide estimates of single components of the vector current density, even if there are only two or three satellites flying in formation, within the current region, as can be the case when there is a highly irregular spacecraft configuration. The computation of magnetic field gradients and topology in general includes magnetic rotation analysis and various least squares approaches, as well as the curlometer, and indeed the added inclusion of plasma measurements and the extension to larger arrays of spacecraft have recently been considered

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Cortico-cerebellar functional connectivity and sequencing of movements in schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormal execution of several movements in a sequence is a frequent finding in schizophrenia. Successful performance of such motor acts requires correct integration of cortico-subcortical processes, particularly those related to cerebellar functions. Abnormal connectivity between cortical and cerebellar regions with resulting cognitive dysmetria has been proposed as the core dysfunction behind many signs and symptoms of schizophrenia. The aim of the present study was to assess if these proposed abnormalities in connectivity are a unifying feature of schizophrenia, or, rather, reflect a specific symptom domain of a heterogeneous disease. We predicted that abnormal functional connectivity between the motor cortex and cerebellum would be linked with abnormal performance of movement sequencing.</p> <p>Methods</p> <p>We examined 24 schizophrenia patients (SCH) and 24 age-, sex-, and handedness-matched healthy controls (HC) using fMRI during a modified finger-tapping task. The ability to perform movement sequencing was tested using the Neurological Evaluation Scale (NES). The subjects were categorized into two groups, with (SQ+) and without (SQ-) movement sequencing abnormalities, according to the NES-SQ score. The effects of diagnosis and movement sequencing abnormalities on the functional connectivity parameters between the motor cortex and cerebellum (MC-CRBL) and the supplementary motor cortex and cerebellum (SMA-CRBL) activated during the motor task were analyzed.</p> <p>Results</p> <p>We found no effect of diagnosis on the functional connectivity measures. There was, however, a significant effect on the SQ group: SQ + patients showed a lower level of MC-CRBL connectivity than SQ- patients and healthy controls. Moreover, the level of MC-CRBL and SMA-CRBL negatively correlated with the magnitude of NES-SQ abnormalities, but with no other NES domain.</p> <p>Conclusions</p> <p>Abnormal cortico-cerebellar functional connectivity during the execution of a motor task is linked with movement sequencing abnormalities in schizophrenia, but not with the diagnosis of schizophrenia per se. It seems that specific patterns of inter-regional connectivity are linked with corresponding signs and symptoms of clinically heterogeneous conditions such as schizophrenia.</p
    corecore