39 research outputs found

    Enhanced killing of androgen-independent prostate cancer cells using inositol hexakisphosphate in combination with proteasome inhibitors

    Get PDF
    Effective treatments for androgen-independent prostate cancer (AIPCa) are lacking. To address this, emerging therapeutics such as proteasome inhibitors are currently undergoing clinical trials. Inositol hexakisphosphate (IP6) is an orally non-toxic phytochemical that exhibits antitumour activity against several types of cancer including PCa. We have previously shown that treatment of PC3 cells with IP6 induces the transcription of a subset of nuclear factor-κB (NF-κB)-responsive and pro-apoptotic BCL-2 family genes. In this study, we report that although NF-κB subunits p50/p65 translocate to the nucleus of PC3 cells in response to IP6, inhibition of NF-κB-mediated transcription using non-degradable inhibitor of κB (IκB)-α does not modulate IP6 sensitivity. Treatment with IP6 also leads to increased protein levels of PUMA, BIK/NBK and NOXA between 4 and 8 h of treatment and decreased levels of MCL-1 and BCL-2 after 24 h. Although blocking transcription using actinomycin D does not modulate PC3 cell sensitivity to IP6, inhibition of protein translation using cycloheximide has a significant protective effect. In contrast, blocking proteasome-mediated protein degradation using MG-132 significantly enhances the ability of IP6 to reduce cellular metabolic activity in both PC3 and DU145 AIPCa cell lines. This effect of combined treatment on mitochondrial depolarisation is particularly striking and is also reproduced by another proteasome inhibitor (ALLN). The enhanced effect of combined MG132/IP6 treatment is almost completely inhibited by cycloheximide and correlates with changes in BCL-2 family protein levels. Altogether these results suggest a role for BCL-2 family proteins in mediating the combined effect of IP6 and proteasome inhibitors and warrant further pre-clinical studies for the treatment of AIPCa

    Tissue properties and respiratory kinematics of the tongue base and soft palate in the obese OSA minipig.

    No full text
    Obesity is a common finding and a major pathogenetic factor in obstructive sleep apnea (OSA) in adults. To understand the mechanisms behind this, the present study investigated the tissue properties and respiratory kinematics of the tongue base and soft palate in the obese OSA minipig model. In 4 verified obese/OSA and 3 non-obese/non-OSA control minipigs, MRI fat-weighted images, ultrasound elastography (USE), and sleep video-fluoroscopy (SVF) were performed to quantify the fat composition, tissue stiffness, and respiratory kinematics of the tongue base and soft palate during sedated sleep. The results indicated that the fat composition gradually increased from the rostral to caudal tongue base, particularly in the posterior 1/3 of the tongue base, regardless of the presence of obesity and OSA. However, this trend was not seen in the soft palate and pharyngeal wall. The pharyngeal wall presented the highest fat composition as compared with the tongue base and soft palate. Overall, obese OSA minipigs showed stiffer tongue tissue than the controls, particularly in the rostral region of the tongue in obese Yucatan minipigs. The respiratory moving ranges of the soft palate were greater in both dorsal-ventral and rostral-caudal directions and during both respiratory and expiratory phases in OSA obese than control minipigs, and the largest moving ranges were seen in OSA obese Panepinto minipigs. The moving range of the tongue base was significantly smaller. These results suggest more fat infiltration in the caudal region of the tongue base regardless of the presence of obesity and/or OSA. The greater tissue stiffness of the tongue in obese OSA minipigs may result from altered neuromuscular drive

    Small-Area Estimation and Prioritizing Communities for Obesity Control in Massachusetts

    No full text
    Objectives. We developed a method to evaluate geographic and temporal variations in community-level obesity prevalence and used that method to identify communities in Massachusetts that should be considered high priority communities for obesity control
    corecore