144 research outputs found

    Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer

    Get PDF
    Pancreatic cancer (PC) mobilizes myeloid cells from the bone marrow to the tumor where they promote tumor growth and proliferation. Cancer stem cells (CSCs) are a population of tumor cells that are responsible for tumor initiation. Aldehyde dehydrogenase-1 activity in PC identifies CSCs, and its activity has been correlated with poor overall prognosis in human PC. Myeloid cells have been shown to impact tumor stemness, but the impact of immunosuppressive tumor-infiltrating granulocytic and monocytic myeloid-derived suppressor cells (Mo-MDSC) on ALDH1(Bright) CSCs and epithelial to mesenchymal transition is not well understood. In this study, we demonstrate that Mo-MDSC (CD11b(+)/Gr1(+)/Ly6G(βˆ’)/Ly6C(hi)) significantly increase the frequency of ALDH1(Bright) CSCs in a mouse model of PC. Additionally, there was significant upregulation of genes associated with epithelial to mesenchymal transition. We also found that human PC converts CD14(+) peripheral blood monocytes into Mo-MDSC (CD14(+)/HLA-DR(low/βˆ’)) in vitro, and this transformation is dependent on the activation of the STAT3 pathway. In turn, these Mo-MDSC increase the frequency of ALDH1(Bright) CSCs and promote mesenchymal features of tumor cells. Finally, blockade of STAT3 activation reversed the increase in ALDH1(Bright) CSCs. These data suggest that the PC tumor microenvironment transforms monocytes to Mo-MDSC by STAT3 activation, and these cells increase the frequency of ALDH1(Bright) CSCs. Therefore, targeting STAT3 activation may be an effective therapeutic strategy in targeting CSCs in PC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00262-014-1527-x) contains supplementary material, which is available to authorized users

    The Ny-Γ…lesund Aerosol Cloud Experiment (NASCENT): Overview and First Results

    Get PDF
    The Arctic is warming at more than twice the rate of the global average. This warming is influenced by clouds, which modulate the solar and terrestrial radiative fluxes and, thus, determine the surface energy budget. However, the interactions among clouds, aerosols, and radiative fluxes in the Arctic are still poorly understood. To address these uncertainties, the Ny-Γ…lesund Aerosol Cloud Experiment (NASCENT) study was conducted from September 2019 to August 2020 in Ny-Γ…lesund, Svalbard. The campaign’s primary goal was to elucidate the life cycle of aerosols in the Arctic and to determine how they modulate cloud properties throughout the year. In situ and remote sensing observations were taken on the ground at sea level, at a mountaintop station, and with a tethered balloon system. An overview of the meteorological and the main aerosol seasonality encountered during the NASCENT year is introduced, followed by a presentation of first scientific highlights. In particular, we present new findings on aerosol physicochemical and molecular properties. Further, the role of cloud droplet activation and ice crystal nucleation in the formation and persistence of mixed-phase clouds, and the occurrence of secondary ice processes, are discussed and compared to the representation of cloud processes within the regional Weather Research and Forecasting Model. The paper concludes with research questions that are to be addressed in upcoming NASCENT publications

    Serotonylation of Vascular Proteins Important to Contraction

    Get PDF
    BACKGROUND:Serotonin (5-hydroxytryptamine, 5-HT) was named for its source (sero-) and ability to modify smooth muscle tone (tonin). The biological effects of 5-HT are believed to be carried out by stimulation of serotonin receptors at the plasma membrane. Serotonin has recently been shown to be synthesized in vascular smooth muscle and taken up from external sources, placing 5-HT inside the cell. The enzyme transglutaminase uses primary amines such as 5-HT to covalently modify proteins on glutamine residues. We tested the hypothesis that 5-HT is a substrate for transglutaminase in arterial vascular smooth muscle, with protein serotonylation having physiological function. METHODOLOGY/PRINCIPAL FINDINGS:The model was the rat aorta and cultured aortic smooth muscle cells. Western analysis demonstrated that transglutaminase II was present in vascular tissue, and transglutaminase activity was observed as a cystamine-inhibitable incorporation of the free amine pentylamine-biotin into arterial proteins. Serotonin-biotin was incorporated into alpha-actin, beta-actin, gamma-actin, myosin heavy chain and filamin A as shown through tandem mass spectrometry. Using antibodies directed against biotin or 5-HT, immunoprecipitation and immunocytochemistry confirmed serotonylation of smooth muscle alpha-actin. Importantly, the alpha-actin-dependent process of arterial isometric contraction to 5-HT was reduced by cystamine. CONCLUSIONS:5-HT covalently modifies proteins integral to contractility and the cytoskeleton. These findings suggest new mechanisms of action for 5-HT in vascular smooth muscle and consideration for intracellular effects of primary amines

    Tuning Curvature and Stability of Monoolein Bilayers by Designer Lipid-Like Peptide Surfactants

    Get PDF
    This study reports the effect of loading four different charged designer lipid-like short anionic and cationic peptide surfactants on the fully hydrated monoolein (MO)-based Pn3m phase (Q224). The studied peptide surfactants comprise seven amino acid residues, namely A6D, DA6, A6K, and KA6. D (aspartic acid) bears two negative charges, K (lysine) bears one positive charge, and A (alanine) constitutes the hydrophobic tail. To elucidate the impact of these peptide surfactants, the ternary MO/peptide/water system has been investigated using small-angle X-ray scattering (SAXS), within a certain range of peptide concentrations (R≀0.2) and temperatures (25 to 70Β°C). We demonstrate that the bilayer curvature and the stability are modulated by: i) the peptide/lipid molar ratio, ii) the peptide molecular structure (the degree of hydrophobicity, the type of the hydrophilic amino acid, and the headgroup location), and iii) the temperature. The anionic peptide surfactants, A6D and DA6, exhibit the strongest surface activity. At low peptide concentrations (Rβ€Š=β€Š0.01), the Pn3m structure is still preserved, but its lattice increases due to the strong electrostatic repulsion between the negatively charged peptide molecules, which are incorporated into the interface. This means that the anionic peptides have the effect of enlarging the water channels and thus they serve to enhance the accommodation of positively charged water-soluble active molecules in the Pn3m phase. At higher peptide concentration (Rβ€Š=β€Š0.10), the lipid bilayers are destabilized and the structural transition from the Pn3m to the inverted hexagonal phase (H2) is induced. For the cationic peptides, our study illustrates how even minor modifications, such as changing the location of the headgroup (A6K vs. KA6), affects significantly the peptide's effectiveness. Only KA6 displays a propensity to promote the formation of H2, which suggests that KA6 molecules have a higher degree of incorporation in the interface than those of A6K

    Epidermal Transglutaminase (TGase 3) Is Required for Proper Hair Development, but Not the Formation of the Epidermal Barrier

    Get PDF
    Transglutaminases (TGase), a family of cross-linking enzymes present in most cell types, are important in events as diverse as cell-signaling and matrix stabilization. Transglutaminase 1 is crucial in developing the epidermal barrier, however the skin also contains other family members, in particular TGase 3. This isoform is highly expressed in the cornified layer, where it is believed to stabilize the epidermis and its reduction is implicated in psoriasis. To understand the importance of TGase 3 in vivo we have generated and analyzed mice lacking this protein. Surprisingly, these animals display no obvious defect in skin development, no overt changes in barrier function or ability to heal wounds. In contrast, hair lacking TGase 3 is thinner, has major alterations in the cuticle cells and hair protein cross-linking is markedly decreased. Apparently, while TGase 3 is of unique functional importance in hair, in the epidermis loss of TGase 3 can be compensated for by other family members

    Exome-wide somatic mutation characterization of small bowel adenocarcinoma

    Get PDF
    Small bowel adenocarcinoma (SBA) is an aggressive disease with limited treatment options. Despite previous studies, its molecular genetic background has remained somewhat elusive. To comprehensively characterize the mutational landscape of this tumor type, and to identify possible targets of treatment, we conducted the first large exome sequencing study on a population-based set of SBA samples from all three small bowel segments. Archival tissue from 106 primary tumors with appropriate clinical information were available for exome sequencing from a patient series consisting of a majority of confirmed SBA cases diagnosed in Finland between the years 2003-2011. Paired-end exome sequencing was performed using Illumina HiSeq 4000, and OncodriveFML was used to identify driver genes from the exome data. We also defined frequently affected cancer signalling pathways and performed the first extensive allelic imbalance (Al) analysis in SBA. Exome data analysis revealed significantly mutated genes previously linked to SBA (TP53, KRAS, APC, SMAD4, and BRAF), recently reported potential driver genes (SOX9, ATM, and ARID2), as well as novel candidate driver genes, such as ACVR2A, ACVR1B, BRCA2, and SMARCA4. We also identified clear mutation hotspot patterns in ERBB2 and BRAF. No BRAF V600E mutations were observed. Additionally, we present a comprehensive mutation signature analysis of SBA, highlighting established signatures 1A, 6, and 17, as well as U2 which is a previously unvalidated signature. Finally, comparison of the three small bowel segments revealed differences in tumor characteristics. This comprehensive work unveils the mutational landscape and most frequently affected genes and pathways in SBA, providing potential therapeutic targets, and novel and more thorough insights into the genetic background of this tumor type.Peer reviewe

    Stranger to Familiar: Wild Strepsirhines Manage Xenophobia by Playing

    Get PDF
    The power of play in limiting xenophobia is a well-known phenomenon in humans. Yet, the evidence in social animals remains meager. Here, we aim to determine whether play promotes social tolerance toward strangers in one of the most basal group of primates, the strepsirhines. We observed two groups of wild lemurs (Propithecus verreauxi, Verreaux's sifaka) during the mating season. Data were also collected on nine visiting, outgroup males. We compared the distribution of play, grooming, and aggressive interactions across three conditions: OUT (resident/outgroup interactions), IN (resident/resident interactions in presence of outgroups) and BL-IN (baseline of resident/resident interactions in absence of outgroups). Play frequency between males was higher in OUT than in IN and BL-IN conditions; whereas, grooming was more frequent in IN than in OUT and BL-IN conditions. Aggression rates between resident and outgroup males were significantly higher than those between residents. However, aggressions between resident and outgroup males significantly decreased after the first play session and became comparable with resident-resident aggression levels. The presence of strangers in a well-established group implies the onset of novel social circumstances, which sifaka males cope with by two different tactics: grooming with ingroup males and playing with outgroup ones. The grooming peak, concurrently with the visit of outgroups, probably represents a social shield adopted by resident males to make their pre-existing affiliation more evident to the stranger β€œaudience”. Being mostly restricted to unfamiliar males, adult play in sifaka appears to have a role in managing new social situations more than in maintaining old relationships. In particular, our results indicate not only that play is the interface between strangers but also that it has a specific function in reducing xenophobia. In conclusion, play appears to be an ice-breaker mechanism in the critical process that β€œupgrades” an individual from stranger to familiar

    Calcium Triggered LΞ±-H2 Phase Transition Monitored by Combined Rapid Mixing and Time-Resolved Synchrotron SAXS

    Get PDF
    BACKGROUND: Awad et al. reported on the Ca(2+)-induced transitions of dioleoyl-phosphatidylglycerol (DOPG)/monoolein (MO) vesicles to bicontinuous cubic phases at equilibrium conditions. In the present study, the combination of rapid mixing and time-resolved synchrotron small-angle X-ray scattering (SAXS) was applied for the in-situ investigations of fast structural transitions of diluted DOPG/MO vesicles into well-ordered nanostructures by the addition of low concentrated Ca(2+) solutions. METHODOLOGY/PRINCIPAL FINDINGS: Under static conditions and the in absence of the divalent cations, the DOPG/MO system forms large vesicles composed of weakly correlated bilayers with a d-spacing of approximately 140 A (L(alpha)-phase). The utilization of a stopped-flow apparatus allowed mixing these DOPG/MO vesicles with a solution of Ca(2+) ions within 10 milliseconds (ms). In such a way the dynamics of negatively charged PG to divalent cation interactions, and the kinetics of the induced structural transitions were studied. Ca(2+) ions have a very strong impact on the lipidic nanostructures. Intriguingly, already at low salt concentrations (DOPG/Ca(2+)>2), Ca(2+) ions trigger the transformation from bilayers to monolayer nanotubes (inverted hexagonal phase, H(2)). Our results reveal that a binding ratio of 1 Ca(2+) per 8 DOPG is sufficient for the formation of the H(2) phase. At 50 degrees C a direct transition from the vesicles to the H(2) phase was observed, whereas at ambient temperature (20 degrees C) a short lived intermediate phase (possibly the cubic Pn3m phase) coexisting with the H(2) phase was detected. CONCLUSIONS/SIGNIFICANCE: The strong binding of the divalent cations to the negatively charged DOPG molecules enhances the negative spontaneous curvature of the monolayers and causes a rapid collapsing of the vesicles. The rapid loss of the bilayer stability and the reorganization of the lipid molecules within ms support the argument that the transition mechanism is based on a leaky fusion of the vesicles

    The Redox State of Transglutaminase 2 Controls Arterial Remodeling

    Get PDF
    While inward remodeling of small arteries in response to low blood flow, hypertension, and chronic vasoconstriction depends on type 2 transglutaminase (TG2), the mechanisms of action have remained unresolved. We studied the regulation of TG2 activity, its (sub) cellular localization, substrates, and its specific mode of action during small artery inward remodeling. We found that inward remodeling of isolated mouse mesenteric arteries by exogenous TG2 required the presence of a reducing agent. The effect of TG2 depended on its cross-linking activity, as indicated by the lack of effect of mutant TG2. The cell-permeable reducing agent DTT, but not the cell-impermeable reducing agent TCEP, induced translocation of endogenous TG2 and high membrane-bound transglutaminase activity. This coincided with inward remodeling, characterized by a stiffening of the artery. The remodeling could be inhibited by a TG2 inhibitor and by the nitric oxide donor, SNAP. Using a pull-down assay and mass spectrometry, 21 proteins were identified as TG2 cross-linking substrates, including fibronectin, collagen and nidogen. Inward remodeling induced by low blood flow was associated with the upregulation of several anti-oxidant proteins, notably glutathione-S-transferase, and selenoprotein P. In conclusion, these results show that a reduced state induces smooth muscle membrane-bound TG2 activity. Inward remodeling results from the cross-linking of vicinal matrix proteins, causing a stiffening of the arterial wall
    • …
    corecore