493 research outputs found
Reply to the discussion by Ganesh on “Analysis of passive earth pressure modification due to seepage flow effects"
Using an assumed vertical retaining wall with a drainage system along the soil–structure interface, this paper analyses the effect of anisotropic seepage flow on the development of passive earth pressure. Extremely unfavourable seepage flow inside the backfill, perhaps due to heavy rainfall, will dramatically increase active earth pressure while reducing passive earth pressure, thus increasing the probability of instability of the retaining structure. A trial and error analysis based on limit equilibrium is applied to identify the optimum failure surface. The flow field is computed using Fourier series expansion, and the effective reaction force along the curved failure surface is obtained by solving a modified Kötter equation considering the effect of seepage flow. This approach correlates well with other existing results. For small values of both the internal friction angle and interface friction angle, the failure surface can be appropriately simplified with a planar approximation. A parametric study indicates that the degree of anisotropic seepage flow affects the resulting passive earth pressure. In addition, incremental increases in the effective friction angle and interface friction angle both lead to an increase in passive earth pressure
Modelling the engineering behaviour of fibrous peat formed due to rapid anthropogenic terrestrialization in Hangzhou, China
This is an accepted manuscript of an article published by Elsevier in Engineering Geology on 21/10/2016, available online: https://doi.org/10.1016/j.enggeo.2016.10.009
The accepted version of the publication may differ from the final published version.Peat is a very variable but normally weak material. While engineering failures involving peat are common, the full diversity of engineering behaviours exhibited by peat has not been well classified due to its large range of possible compositions. This paper presents the behaviour of a fibrous peat which is a fill (made ground) originating from the most recent dredging of the West Lake, a site of cultural and historic importance in China. Given its relatively unique mechanism of deposition, the distinctive characteristics of this peat are presented in comparison to other peats reported in the literature highlighting its unique engineering behaviour. A laboratory study carried out on the peat at Jiangyangfan Eco-park, located in Hangzhou, China identifies that it has its special aspects when compared to other peats. The shearing behaviour of peat can be described using the framework of critical state theory. The most prominent characteristic of the West Lake Peat is that its undrained stress path bends towards the left at the very beginning of shearing which indicates that plastic deformation occurs at very small stress ratios. A constitutive model based on critical state theory for predicting the undrained shear behaviour of this type of peat from low stress to critical state levels is presented. This model also includes several elements of peat behaviour previously reported and it may therefore be applied to a wider range of peat soils
Lattice Boltzmann flux solver for simulation of hypersonic flows
In this paper, a stable Lattice Boltzmann Flux Solver (LBFS) is proposed for simulation of hypersonic flows. In LBFS, the finite volume method is applied to solve the Navier-Stokes equations. One-dimensional Lattice Boltzmann model is applied to reconstruct the inviscid flux across the cell interface, while the viscous flux is solved by conventional smooth approximation function. The present work extends the existing LBFS to calculate hypersonic flow field on the leeward, which is hard to get convergent results due to extremely low pressure effects in this area. Simulation of a biconics model is studied. It is discovered that the tail area of double cone is related to the maximum Mach number that could be convergent. The larger the diameter of tail area is, the smaller Mach number could be convergent. Hence, the low pressure area behind double cone tail will have large effects during the LBFS simulation of hypersonic flow. Two measurements are applied in this paper to overcome the low pressure problem. The first one is to apply a local block grid refinement method based on the flow conditions for improving the stability. The second is to add a constraint parameter to eliminate negative value and give out a proper one. Hence, LBFS is able to get convergent result of the hypersonic flow field on both windward and leeward. Several numerical examples are tested to compare the performance of method presented in this paper. Simulation results show that method present in this paper is able to calculate hypersonic flow field on the leeward with both fine accurate and efficient
Unraveling the Rich Fragmentation Dynamics Associated with S-H Bond Fission Following Photoexcitation of H <sub>2</sub>S at Wavelengths ∼129.1 nm
H2S is being detected in the atmospheres of ever more interstellar bodies, and photolysis is an important mechanism by which it is processed. Here, we report H Rydberg atom time-of-flight measurements following the excitation of H2S molecules to selected rotational (JKaKc′) levels of the 1B1 Rydberg state associated with the strong absorption feature at wavelengths of λ ∼ 129.1 nm. Analysis of the total kinetic energy release spectra derived from these data reveals that all levels predissociate to yield H atoms in conjunction with both SH(A) and SH(X) partners and that the primary SH(A)/SH(X) product branching ratio increases steeply with ⟨Jb2⟩, the square of the rotational angular momentum about the b-inertial axis in the excited state. These products arise via competing homogeneous (vibronic) and heterogeneous (Coriolis-induced) predissociation pathways that involve coupling to dissociative potential energy surfaces (PES(s)) of, respectively, 1A″ and 1A′ symmetries. The present data also show H + SH(A) product formation when exciting the JKaKc′ = 000 and 111 levels, for which ⟨Jb2⟩ = 0 and Coriolis coupling to the 1A′ PES(s) is symmetry forbidden, implying the operation of another, hitherto unrecognized, route to forming H + SH(A) products following excitation of H2S at energies above ∼9 eV. These data can be expected to stimulate future ab initio molecular dynamic studies that test, refine, and define the currently inferred predissociation pathways available to photoexcited H2S molecules
Sensitive and fast identification of bacteria in blood samples by immunoaffinity mass spectrometry for quick BSI diagnosis
Bloodstream infections rank among the most serious causes of morbidity and mortality in hospitalized patients, partly due to the long period (up to one week) required for clinical diagnosis. In this work, we have developed a sensitive method to quickly and accurately identify bacteria in human blood samples by combining optimized matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) and efficient immunoaffinity enrichment/separation. A library of bacteria reference mass spectra at different cell numbers was firstly built. Due to a reduced sample spot size, the reference spectra could be obtained from as few as 10 to 10(2) intact bacterial cells. Bacteria in human blood samples were then extracted using antibodies-modified magnetic beads for MS fingerprinting. By comparing the sample spectra with the reference spectra based on a cosine correlation, bacteria with concentrations as low as 500 cells per mL in blood serum and 8000 cells per mL in whole blood were identified. The proposed method was further applied to positive clinical blood cultures (BCs) provided by a local hospital, where Escherichia coli and Staphylococcus aureus were identified. Because of the method's high sensitivity, the BC time required for diagnosis can be greatly reduced. As a proof of concept, whole blood spiked with a low initial concentration (10(2) or 10(3) cells per mL) of bacteria was cultured in commercial BC bottles and analysed by the developed method after different BC times. Bacteria were successfully identified after 4 hours of BC. Therefore, an entire diagnostic process could be accurately accomplished within half a day using the newly developed method, which could facilitate the timely determination of appropriate anti-bacterial therapy and decrease the risk of mortality from bloodstream infections
Improved Eavesdropping Detection Strategy in Quantum Direct Communication Protocol Based on Four-particle GHZ State
In order to improve the eavesdropping detection efficiency in two-step
quantum direct communication protocol, an improved eavesdropping detection
strategy using four-particle GHZ state is proposed, in which four-particle GHZ
state is used to detect eavesdroppers. During the security analysis, the method
of the entropy theory is introduced, and two detection strategies are compared
quantitatively by using the constraint between the information which
eavesdropper can obtain and the interference introduced. If the eavesdroppers
intend to obtain all information, the eavesdropping detection rate of the
original two-step quantum direct communication protocol by using EPR pair block
as detection particles is 50%; while the proposed strategy's detection rate is
88%. In the end, the security of the proposed protocol is discussed. The
analysis results show that the eavesdropping detection strategy presented is
more secure.Comment: 14 pages, 3 figures. arXiv admin note: substantial text overlap with
arXiv:quant-ph/0308173 by different author
Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics
The THz dielectric properties of MgTiO3–CaTiO3 ceramics are reported. The ceramics were prepared via a solid-state reaction route and the sintering conditions were optimized to obtain ceramics with high permittivity and low loss in the terahertz frequency domain. The amount of impurities (MgTi2O5) and grain size increased with increasing sintering temperature. The dielectric properties improved with increasing density, and the best terahertz dielectric performance was obtained at 1260 °C, with a permittivity of 17.73 and loss of 3.07×10−3. Ceramics sintered above 1260 °C showed a sharp increase in loss, which is ascribed to an increase in the impurity content
Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems
Thermal transport is an important energy transfer process in nature. Phonon
is the major energy carrier for heat in semiconductor and dielectric materials.
In analogy to Ohm's law for electrical conductivity, Fourier's law is a
fundamental rule of heat transfer in solids. It states that the thermal
conductivity is independent of sample scale and geometry. Although Fourier's
law has received great success in describing macroscopic thermal transport in
the past two hundreds years, its validity in low dimensional systems is still
an open question. Here we give a brief review of the recent developments in
experimental, theoretical and numerical studies of heat transport in low
dimensional systems, include lattice models, nanowires, nanotubes and
graphenes. We will demonstrate that the phonon transports in low dimensional
systems super-diffusively, which leads to a size dependent thermal
conductivity. In other words, Fourier's law is breakdown in low dimensional
structures
Summer soil drying exacerbated by earlier spring greening of northern vegetation
Earlier vegetation greening under climate change raises evapotranspiration and thus lowers spring soil moisture, yet the extent and magnitude of this water deficit persistence into the following summer remain elusive. We provide observational evidence that increased foliage cover over the Northern Hemisphere, during 1982–2011, triggers an additional soil moisture deficit that is further carried over into summer. Climate model simulations independently support this and attribute the driving process to be larger increases in evapotranspiration than in precipitation. This extra soil drying is projected to amplify the frequency and intensity of summer heatwaves. Most feedbacks operate locally, except for a notable teleconnection where extra moisture transpired over Europe is transported to central Siberia. Model results illustrate that this teleconnection offsets Siberian soil moisture losses from local spring greening. Our results highlight that climate change adaptation planning must account for the extra summer water and heatwave stress inherited from warming-induced earlier greening
- …