8 research outputs found

    Zinc supplementation fails to increase the immunogenicity of oral poliovirus vaccine: a randomized controlled trial

    No full text
    Background: Polio eradication remains a challenge in Pakistan and the causes for the failure to eradicate poliomyelitis are complex. Undernutrition and micronutrient deficiencies, especially zinc deficiency, are major public health problems in Pakistan and could potentially affect the response to enteric vaccines, including oral poliovirus vaccine (OPV). Objective: To assess the impact of zinc supplementation among infants on immune response to oral poliovirus vaccine (OPV). Methods: A double-blind, randomized placebo-controlled trial was conducted in newborns (aged 0–14 days). Subjects were assigned to either receive 10 mg of zinc or placebo supplementation daily for 18 weeks. Both groups received OPV doses at birth, at 6 weeks, 10 weeks and 14 weeks. Data was collected on prior immunization status, diarrheal episodes, breastfeeding practices and anthropometric measurements at recruitment and at 6 and 18 weeks. Blood samples were similarly collected to determine the antibody response to OPV and for micronutrient analysis. Logistic regression was used to determine the relationship between seroconversion and zinc status. Results: Overall, 404 subjects were recruited. At recruitment, seropositivity was already high for poliovirus (PV) serotype 1 (zinc: 91.1%; control: 90.5%) and PV2 (90.0%; 92.7%), with lower estimates for PV3 (70.0%; 64.8%). By week 18, the proportion of subjects with measured zinc levels in the normal range (i.e. ≥60 μg/dL) was significantly greater in the intervention group compared to the control group (71.9%; 27.4%; p \u3c 0.001). No significant difference in seroconversion was demonstrated between the groups for PV1, PV2, or PV3. Conclusions: There was no effect of zinc supplementation on OPV immunogenicity. These conclusions were confirmed when restricting the analysis to those with measured higher zinc level

    A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids

    No full text
    A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.Diabetes mellitus: pathophysiological changes and therap

    The power of genetic diversity in genome-wide association studies of lipids (vol 600, pg 675, 2021)

    Get PDF
    Metabolic health: pathophysiological trajectories and therap

    The power of genetic diversity in genome-wide association studies of lipids

    No full text
    Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use(1). Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels(2), heart disease remains the leading cause of death worldwide(3). Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS(4-23) have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns(24). Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine(25), we anticipate that increased diversity of participants will lead to more accurate and equitable(26) application of polygenic scores in clinical practice.Prevention, Population and Disease management (PrePoD)Public Health and primary car

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk

    Body mass index and complications following major gastrointestinal surgery: A prospective, international cohort study and meta-analysis

    No full text
    Aim Previous studies reported conflicting evidence on the effects of obesity on outcomes after gastrointestinal surgery. The aims of this study were to explore the relationship of obesity with major postoperative complications in an international cohort and to present a metaanalysis of all available prospective data. Methods This prospective, multicentre study included adults undergoing both elective and emergency gastrointestinal resection, reversal of stoma or formation of stoma. The primary end-point was 30-day major complications (Clavien–Dindo Grades III–V). A systematic search was undertaken for studies assessing the relationship between obesity and major complications after gastrointestinal surgery. Individual patient meta-analysis was used to analyse pooled results. Results This study included 2519 patients across 127 centres, of whom 560 (22.2%) were obese. Unadjusted major complication rates were lower in obese vs normal weight patients (13.0% vs 16.2%, respectively), but this did not reach statistical significance (P = 0.863) on multivariate analysis for patients having surgery for either malignant or benign conditions. Individual patient meta-analysis demonstrated that obese patients undergoing surgery formalignancy were at increased risk of major complications (OR 2.10, 95% CI 1.49–2.96, P < 0.001), whereas obese patients undergoing surgery for benign indications were at decreased risk (OR 0.59, 95% CI 0.46–0.75, P < 0.001) compared to normal weight patients. Conclusions In our international data, obesity was not found to be associated with major complications following gastrointestinal surgery. Meta-analysis of available prospective data made a novel finding of obesity being associated with different outcomes depending on whether patients were undergoing surgery for benign or malignant disease
    corecore