92 research outputs found

    1S0 Proton and Neutron Superfluidity in beta-stable Neutron Star Matter

    Get PDF
    We investigate the effect of a microscopic three-body force on the proton and neutron superfluidity in the 1S0^1S_0 channel in β\beta-stable neutron star matter. It is found that the three-body force has only a small effect on the neutron 1S0^1S_0 pairing gap, but it suppresses strongly the proton 1S0^1S_0 superfluidity in β\beta-stable neutron star matter.Comment: 12 pages, 2 figure

    Effect of Three-body Interaction on Phase Transition of Hot Asymmetric Nuclear Matter

    Full text link
    The properties and the isospin dependence of the liquid-gas phase transition in hot asymmetric nuclear matter have been investigated within the framework of the finite temperature Brueckner-Hartree-Fock approach extended to include the contribution of a microscopic three-body force. A typical Van der Waals structure has been observed in the calculated isotherms (of pressure) for symmetric nuclear matter implying the presence of the liquid-gas phase transition. The critical temperature of the phase transition is calculated and its dependence on the proton-to-neutron ratio is discussed. It is shown that the three-body force gives a repulsive contribution to the nuclear equation of state and reduces appreciably the critical temperature and the mechanical instable region. At fixed temperature and density the pressure of asymmetric nuclear matter increases monotonically as a function of isospin asymmetry. In addition, it turns out that the domain of mechanical instability for hot asymmetric nuclear matter gradually shrinks with increasing asymmetry and temperature. We have compared our results with the predictions of other theoretical models especially the Dirac Brueckner approach. A possible explanation for the discrepancy between the values of the critical temperature predicted by the present non-relativistic Brueckner calculations including the three-body force and the relativistic Dirac-Brueckner method is given.Comment: 16 pages, 5 figure

    Recent breakthroughs in Skyrme-Hartree-Fock-Bogoliubov mass formulas

    Full text link
    We review our recent achievements in the construction of microscopic mass tables based on the Hartree-Fock-Bogoliubov method with Skyrme effective interactions. In the latest of our series of HFB-mass models, we have obtained our best fit ever to essentially all the available mass data, by treating the pairing more realistically than in any of our earlier models. The rms deviation on the 2149 measured masses of nuclei with N and Z>8 has been reduced for the first time in a mean field approach to 0.581 MeV. With the additional constraint on the neutron-matter equation of state, this new force is thus very well-suited for the study of neutron-rich nuclei and for the description of astrophysical environments like supernova cores and neutron-star crusts.Comment: Proceedings of the Fifth International Conference on Exotic Nuclei and Atomic Masses, September 7-13 2008, Ryn (Poland). To appear in the European Physical Journal

    Strong Couplings of Heavy Mesons to A Light Vector Meson in QCD

    Get PDF
    We make a detailed analysis of the BBρ(DDρ)BB\rho(DD\rho) and BBρ(DDρ)B^*B\rho(D^{*}D\rho) strong couplings gBBρ(gDDρ)g_{BB\rho}(g_{DD\rho}) and gBBρ(gDDρ)g_{B^*B\rho}(g_{D^{*}D\rho}) using QCD light cone sum rules(LCSR). The existing some negligence is pointed out in the previous LCSR calculation on gBBρ(gDDρg_{B^*B\rho} (g_{D^{\ast}D\rho}) and an updated estimate is presented. Our findings can be used to understand the behavior of the B,DρB,D \to \rho semileptonic form factors at large momentum transitions.Comment: 15 pages, latex, 2 figures, version appearing in PRD, typos correcte

    Fine structure in the α decay of 223U

    Get PDF
    Fine structure in the α decay of 223U was observed in the fusion-evaporation reaction 187Re(40Ar, p3n) by using fast digital pulse processing technique. Two α-decay branches of 223U feeding the ground state and 244 keV excited state of 219Th were identified by establishing the decay chain 223U →α1 219Th →α2 215Ra →α3 211Rn. The α-particle energy for the ground-state to ground-state transition of 223U was determined to be 8993(17) keV, 213 keV higher than the previous value, the half-life was updated to be 62−10+14 μs. Evolution of nuclear structure for N = 131 even-Z isotones from Po to U was discussed in the frameworks of nuclear mass and reduced α-decay width, a weakening octupole deformation in the ground state of 223U relative to its lighter isotones 219Ra and 221Th was suggested

    Quasifree Neutron Knockout Reaction Reveals a Small s-Orbital Component in the Borromean Nucleus 17B

    Get PDF
    International audienceA kinematically complete quasifree (p,pn) experiment in inverse kinematics was performed to study the structure of the Borromean nucleus B17, which had long been considered to have a neutron halo. By analyzing the momentum distributions and exclusive cross sections, we obtained the spectroscopic factors for 1s1/2 and 0d5/2 orbitals, and a surprisingly small percentage of 9(2)% was determined for 1s1/2. Our finding of such a small 1s1/2 component and the halo features reported in prior experiments can be explained by the deformed relativistic Hartree-Bogoliubov theory in continuum, revealing a definite but not dominant neutron halo in B17. The present work gives the smallest s- or p-orbital component among known nuclei exhibiting halo features and implies that the dominant occupation of s or p orbitals is not a prerequisite for the occurrence of a neutron halo
    corecore