15 research outputs found

    Water delivery to the TRAPPIST-1 planets

    Get PDF
    Three of the seven rocky planets (e, f, and g) in TRAPPIST-1 system orbit in the habitable zone of the host star. Therefore, water can be in liquid state at their surface being essential for life. Recent studies suggest that these planets formed beyond the snow line in a water-rich region. The initial water reservoir can be lost during the planet formation due to the stellar activity of the infant low-mass star. However, a potential subsequent water delivery event, like the late heavy bombardment (LHB) in the Solar system, can replenish planetary water reservoirs. To study this water delivery process, we set up a simple model in which an additional 5 -50 M⊕ planet is embedded in a water-rich asteroid belt beyond the snow line of TRAPPIST-1. Asteroids perturbed out from the chaotic zone of the putative planet can enter into the inner system and accreted by the known planets. Our main finding is that the larger is the orbital distance of planet, the higher is the amount of water delivered to the planet by an LHB-like event

    A possible interrelation between the estimated luminosity distances and internal extinctions of type Ia supernovae

    Get PDF
    We studied the statistical properties of the luminosity distance and internal extinction data of type Ia supernovae in the lists published by Tonry et al. (2003) and Barris et al. (2004). After selecting the luminosity distance in an empty Universe as a reference level we divided the sample into low z<0.25z<0.25 and high z0.25z \ge 0.25 parts. We further divided these subsamples by the median of the internal extinction. Performing sign tests using the standardized residuals between the estimated logarithmic luminosity distances and those of an empty universe, on the four subsamples separately, we recognized that the residuals were distributed symmetrically in the low redshift region, independently from the internal extinction. On the contrary, the low extinction part of the data of z0.25z \ge 0.25 clearly showed an excess of the points with respect to an empty Universe which was not the case in the high extinction region. This diversity pointed to an interrelation between the estimated luminosity distance and internal extinction. To characterize quantitatively this interrelation we introduced a hidden variable making use of the technics of factor analysis. After subtracting that part of the residual which was explained by the hiddenmaking use of the technics of factor analysis. After subtracting that part of the residual which was explained by the hidden variable we obtained luminosity distances which were already free from interrelation with internal extinction. Fitting the corrected luminosity distances with cosmological models we concluded that the SN Ia data alone did not exclude the possibility of the Λ=0\Lambda=0 solution

    On the vortex evolution in non-isothermal protoplanetary discs

    Get PDF
    It is believed that large-scale horseshoe-like brightness asymmetries found in dozens of transitional protoplanetary discs are caused by anticyclonic vortices. These vortices can play a key role in planet formation, as mm-sized dust-the building blocks of planets-can be accumulated inside them. Anticyclonic vortices are formed by the Rossby wave instability, which can be excited at the gap edges opened by a giant planet or at sharp viscosity transitions of accretionally inactive regions. It is known that vortices are prone to stretching and subsequent dissolution due to disc self-gravity for canonical disc masses in the isothermal approximation. To improve the hydrodynamic model of protoplanetary discs, we include the disc thermodynamics in our model. In this paper, we present our results on the evolution of the vortices formed at the outer edge of an accretionally inactive region (dead zone) assuming an ideal equation of state and taking PdV work, disc cooling in the β-Approximation, and disc self-gravity into account. Thermodynamics affects the offset and the mode number (referring to the number of small vortices at the early phase) of the RWI excitation, as well as the strength, shape, and lifetime of the large-scale vortex formed through merging of the initial small vortices. We found that the inclusion of gas thermodynamics results in stronger, however decreased lifetime vortices. Our results suggest that a hypothetical vortex-Aided planet formation scenario favours effectively cooling discs. © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

    Outbursts in Global Protoplanetary Disk Simulations

    Full text link
    While accreting through a circumstellar disk, young stellar objects are observed to undergo sudden and powerful accretion events known as FUor or EXor outbursts. Although such episodic accretion is considered to be an integral part of the star formation process, the triggers and mechanisms behind them remain uncertain. We conducted global numerical hydrodynamics simulations of protoplanetary disk formation and evolution in the thin-disk limit, assuming both magnetically layered and fully magnetorotational instability (MRI)-active disk structure. In this paper, we characterize the nature of the outbursts occurring in these simulations. The instability in the dead zone of a typical layered disk results in "MRI outbursts." We explore their progression and their dependence on the layered disk parameters as well as cloud core mass. The simulations of fully MRI-active disks showed an instability analogous to the classical thermal instability. This instability manifested at two temperatures - above approximately 1400 K and 3500 K - due to the steep dependence of Rosseland opacity on the temperature. The origin of these thermally unstable regions is related to the bump in opacity resulting from molecular absorption by water vapor and may be viewed as a novel mechanism behind some of the shorter duration accretion events. Although we demonstrated local thermal instability in the disk, more investigations are needed to confirm that a large-scale global instability will ensue. We conclude that the magnetic structure of a disk, its composition, as well as the stellar mass, can significantly affect the nature of episodic accretion in young stellar objects. © 2020. The American Astronomical Society. All rights reserved.Horizon 2020 Framework Programme, H2020: 716155

    Oligarchic growth in a fully interacting system

    Get PDF
    Context. In the oligarchic growth model, protoplanets develop in the final stage of planet formation via collisions between planetesimals and planetary embryos. The majority of planetesimals are accreted by the embryos, while the remnant planetesimals acquire dynamically excited orbits. The efficiency of planet formation can be defined by the mass ratio between formed protoplanets and the initial mass of the embryo-planetesimal belt. Aims. In numerical simulations of the oligarchic growth, the gravitational interactions between planetesimals are usually neglected due to computational difficulties. In this way, computations require fewer resources. We investigated the effect of this simplification by modeling the planet formation efficiency in a belt of embryos with self-interacting or non-self-interacting planetesimals. Methods. We used our own graphics processing unit-based direct N-body integrator for the simulations. We compared 2D models using different initial embryo numbers, different initial planetesimal numbers, and different total initial belt masses. For a limited number of cases, we compared the 2D and 3D simulations. Results. We found that planet formation efficiency is higher if the planetesimal self-interaction is taken into account in models that contain the commonly used 100 embryos. The observed effect can be explained by the damping of planetesimal eccentricities by their self-gravity. The final numbers of protoplanets are independent of planetesimal self-gravity, while the average mass of the formed protoplanets is larger in the self-interacting models. We also found that the non-self-interacting and self-interacting models qualitatively give the same results above 200 embryos. Our findings show that the higher the initial mass of the embryo-planetesimal belt, the higher the discrepancy between models that use self-interacting or non-self-interacting planetesimals is. The study of 3D models showed quantitatively the same results as the 2D models for low average inclination. We conclude that it is important to include planetesimal self-interaction in both 2D and 3D models in cases where the initial embryo number is less than 200

    On the cavity of a debris disc carved by a giant planet

    No full text

    Dynamical Gaseous Rings in Global Simulations of Protoplanetary Disk Formation

    No full text
    Global numerical simulations of protoplanetary disk formation and evolution were conducted in the thin-disk limit, where the model included a magnetically layered disk structure, a self-consistent treatment for the infall from cloud core, and the smallest possible inner computational boundary. We compared the evolution of a layered disk with a fully magnetically active disk. We also studied how the evolution depends on the parameters of the layered disk model—the MRI triggering temperature and active layer thickness—as well as the mass of the prestellar cloud core. With the canonical values of parameters a dead zone formed within the inner ≈15 au region of the magnetically layered disk. The dead zone was not a uniform structure, and long-lived, axisymmetric, gaseous rings ubiquitously formed within this region owing to the action of viscous torques. The rings showed a remarkable contrast in the disk environment as compared to a fully magnetically active disk and were characterized by high surface density and low effective viscosity. Multiple gaseous rings could form simultaneously in the dead zone region, which were highly dynamical and showed complex, time- dependent behavior such as inward migration, vortices, gravitational instability, and large-scale spiral waves. An increase in MRI triggering temperature had only marginal effects, while changes in active layer thickness and the initial cloud core mass had significant effects on the structure and evolution of the inner disk. Dust with large fragmentation barrier could be trapped in the rings, which may play a key role in planet formation

    THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70 ,

    No full text
    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-μm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and 12CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ~65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ~80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration
    corecore