722 research outputs found
Infant crying problems and symptoms of sleeping problems predict attachment disorganization at 18 months
This longitudinal study examined the associations among infant crying, symptoms of sleeping problems, and attachment while considering the influence of maternal sensitivity and depressive symptoms. One hundred and five healthy full-term infants (42.9% female) were assessed for crying and symptoms of sleeping problems at 3 and 18 months via parental interview. Maternal sensitivity was measured through researcher observation, and attachment was measured at 18 months using the Strange Situation procedure. It was found that infant crying and symptoms of sleeping problems were not linked to the organized patterns of secure or insecure (avoidant versus resistant) attachment. However, when the disorganized attachment was considered, there were direct links found from infant crying and symptoms of sleeping problems at 3 months (β= .22, p< .05) and 18 months (β= .21, p< .05). Thus, crying and symptoms of sleeping problems as early as 3 months may indicate a disruption in the coherence of infants’ relationship to their caretakers
Low-lying continuum structures in B8 and Li8 in a microscopic model
We search for low-lying resonances in the B8 and Li8 nuclei using a
microscopic cluster model and a variational scattering method, which is
analytically continued to complex energies. After fine-tuning the
nucleon-nucleon interaction to get the known 1+ state of B8 at the right
energy, we reproduce the known spectra of the studied nuclei. In addition, our
model predicts a 1+ state at 1.3 MeV in B8, relative to the Be7+p threshold,
whose corresponding pair is situated right at the Li7+n threshold in Li8.
Lacking any experimental evidence for the existence of such states, it is
presently uncertain whether these structures really exist or they are spurious
resonances in our model. We demonstrate that the predicted state in B8, if it
exists, would have important consequences for the understanding of the
astrophysically important Be7(p,gamma)B8 reaction.Comment: 6 pages with 1 figure. The postscript file and more information are
available at http://nova.elte.hu/~csot
'Barter', 'deals', 'bribes' and 'threats': Exploring Sibling Interactions
This paper investigates forms of strategic interaction between siblings during childhood. We argue that these interactions, characterised by notions of reciprocity, equivalence and constructions of fairness, are worked out in relation to responsibility, power, knowledge and sibling status. Birth order and age are not experienced as fixed hierarchies as they can be subverted, contested, resisted and negotiated. To explore these issues, in-depth individual and group interviews were conducted with a sample of 90 children between the ages of 5 and 17, drawn from 30 families of mixed socio-economic backgrounds in central Scotland with three siblings within this age range
Characterization of Sleep Stages by Correlations of Heartbeat Increments
We study correlation properties of the magnitude and the sign of the
increments in the time intervals between successive heartbeats during light
sleep, deep sleep, and REM sleep using the detrended fluctuation analysis
method. We find short-range anticorrelations in the sign time series, which are
strong during deep sleep, weaker during light sleep and even weaker during REM
sleep. In contrast, we find long-range positive correlations in the magnitude
time series, which are strong during REM sleep and weaker during light sleep.
We observe uncorrelated behavior for the magnitude during deep sleep. Since the
magnitude series relates to the nonlinear properties of the original time
series, while the signs series relates to the linear properties, our findings
suggest that the nonlinear properties of the heartbeat dynamics are more
pronounced during REM sleep. Thus, the sign and the magnitude series provide
information which is useful in distinguishing between the sleep stages.Comment: 7 pages, 4 figures, revte
Reading the Second Code: Mapping Epigenomes to Understand Plant Growth, Development, and Adaptation to the Environment
We have entered a new era in agricultural and biomedical science made possible by remarkable advances in DNA sequencing technologies. The complete sequence of an individual's set of chromosomes (collectively, its genome) provides a primary genetic code for what makes that individual unique, just as the contents of every personal computer reflect the unique attributes of its owner. But a second code, composed of "epigenetic" layers of information, affects the accessibility of the stored information and the execution of specific tasks. Nature's second code is enigmatic and must be deciphered if we are to fully understand and optimize the genetic potential of crop plants. The goal of the Epigenomics of Plants International Consortium is to crack this second code, and ultimately master its control, to help catalyze a new green revolution
The combined impact of sauerkraut with Leuconostoc mesenteroides to enhance immunomodulatory activity in Escherichia coli-infected mice
This study investigated the combined impact of sauerkraut and Leuconostoc mesenteroides culture on immunomodulatory activity in experimental animal. The in vivo immunomodulatory activity of Escherichia coli-infected Balb-C mice was ascertained in fermented sauerkrauts [test vs. control]. Both sauerkrauts enhanced the adaptive immune response [evidenced by an increase in CD4+ CD8+ IFN-γ, TNFα] and innate immune response [represented by a decrease of CD68-IL-6]. Nev- ertheless, the in vivo immunomodulatory activity of sauerkraut combined with L. mesenteroides was higher than that shown in sauerkraut control solely
Spatial distribution of bivalves in relation to environmental conditions (middle Danube catchment, Hungary)
The spatial distribution of bivalves in relation to environmental conditions was studied along a second- and third
order stream – medium-sized river (River Ipoly) – large river (River Danube) continuum in the Hungarian Danube River system.
Quantitative samples were collected four times in 2007 and a total of 1662 specimens, belonging to 22 bivalve species were identified. Among these species, two are endangered (Pseudanodonta complanata, Unio crassus) and five are invasive (Dreissena polymorpha, D. rostriformis bugensis, Corbicula fluminea, C. fluminalis, Anodonta woodiana) in Hungary. The higher density presented by Pisidium subtruncatum, P. supinum, P. henslowanum and C. fluminea suggests that these species may have a key role in this ecosystem. Three different faunal groups were distinguished but no significant temporal change was detected. The lowest density and diversity with two species (P. casertanum and P. personatum) occurred in streams. The highest
density and diversity was found in the River Ipoly, in the side arms of the Danube and in the main arm of the Danube with sand and silt substrate, being dominated by P. subtruncatum and P. henslowanum. Moderate density and species richness were observed in the main arm of the Danube with pebble and stone substrate, being dominated by C. fluminea and S. rivicola. Ten environmental variables were found to have significant influence on the distribution of bivalves, the strongest explanatory factors being substrate types, current velocity and sedimentological characteristics.The project was financially supported by the Hungarian Scientific Research Fund under the contract No. OTKA T/046180. Special thanks to the DanubeIpoly National Park for the help in field work.info:eu-repo/semantics/publishedVersio
Child and parent predictors of picky eating from preschool to school age
Background: Picky eating is prevalent in childhood. Because pickiness concerns parents and is associated with nutrient deficiency and psychological problems, the antecedents of pickiness need to be identified. We propose an etiological model of picky eating involving child temperament, sensory sensitivity and parent-child interaction. Methods: Two cohorts of 4-year olds (born 2003 or 2004) in Trondheim, Norway were invited to participate (97.2% attendance; 82.0% consent rate, n = 2475) and a screen-stratified subsample of 1250 children was recruited. We interviewed 997 parents about their child’s pickiness and sensory sensitivity using the Preschool Age Psychiatric Assessment (PAPA). Two years later, 795 of the parents completed the interview. The Children’s Behavior Questionnaire (CBQ) was used to assess children’s temperament. Parent- child interactions were videotaped and parental sensitivity (i.e., parental awareness and appropriate responsiveness to children’s verbal and nonverbal cues) and structuring were rated using the Emotional Availability Scales (EAS). Results: At both measurement times, 26% of the children were categorized as picky eaters. Pickiness was moderately stable from preschool to school age (OR = 5.92, CI = 3.95, 8.86), and about half of those who displayed pickiness at age 4 were also picky eaters two years later. While accounting for pickiness at age 4, sensory sensitivity at age 4 predicted pickiness at age 6 (OR = 1.25, CI = 1.08, 2.23), whereas temperamental surgency (OR = 0.88, CI = 0.64, 1.22) and negative affectivity (OR = 1.17, CI = 0.75, 1.84) did not. Parental structuring was found to reduce the risk of children’s picky eating two years later (OR = 0.90, CI = 0.82, 0.99), whereas parental sensitivity increased the odds for pickiness (OR = 1.10, CI = 1.00, 1.21). Conclusions: Although pickiness is stable from preschool to school age, children who are more sensory sensitive are at higher risk for pickiness two years later, as are children whose parents display relatively higher levels of sensitivity and lower levels of structuring. Our findings suggest that interventions targeting children’s sensory sensitivity, as well as parental sensitivity and structuring, might reduce the risk of childhood pickiness. Health care providers should support parents of picky eaters in repeatedly offering unfamiliar and rejected foods to their children without pressure and acknowledging child autonomy
Characterization of the Rabbit Neonatal Fc Receptor (FcRn) and Analyzing the Immunophenotype of the Transgenic Rabbits That Overexpresses FcRn
The neonatal Fc receptor (FcRn) regulates IgG and albumin homeostasis, mediates maternal IgG transport, takes an active role in phagocytosis, and delivers antigen for presentation. We have previously shown that overexpression of FcRn in transgenic mice significantly improves the humoral immune response. Because rabbits are an important source of polyclonal and monoclonal antibodies, adaptation of our FcRn overexpression technology in this species would bring significant advantages. We cloned the full length cDNA of the rabbit FcRn alpha-chain and found that it is similar to its orthologous analyzed so far. The rabbit FcRn - IgG contact residues are highly conserved, and based on this we predicted pH dependent interaction, which we confirmed by analyzing the pH dependent binding of FcRn to rabbit IgG using yolk sac lysates of rabbit fetuses by Western blot. Using immunohistochemistry, we detected strong FcRn staining in the endodermal cells of the rabbit yolk sac membrane, while the placental trophoblast cells and amnion showed no FcRn staining. Then, using BAC transgenesis we generated transgenic rabbits carrying and overexpressing a 110 kb rabbit genomic fragment encoding the FcRn. These transgenic rabbits – having one extra copy of the FcRn when hemizygous and two extra copies when homozygous - showed improved IgG protection and an augmented humoral immune response when immunized with a variety of different antigens. Our results in these transgenic rabbits demonstrate an increased immune response, similar to what we described in mice, indicating that FcRn overexpression brings significant advantages for the production of polyclonal and monoclonal antibodies
Computational archaeology of the Pristionchus pacificus genome reveals evidence of horizontal gene transfers from insects
<p>Abstract</p> <p>Background</p> <p>The recent sequencing of nematode genomes has laid the basis for comparative genomics approaches to study the impact of horizontal gene transfer (HGT) on the adaptation to new environments and the evolution of parasitism. In the beetle associated nematode <it>Pristionchus pacificus </it>HGT events were found to involve cellulase genes of microbial origin and Diapausin genes that are known from beetles, but not from other nematodes. The insect-to-nematode horizontal transfer is of special interest given that <it>P. pacificus </it>shows a tight association with insects.</p> <p>Results</p> <p>In this study we utilized the observation that horizontally transferred genes often exhibit codon usage patterns more similar to that of the donor than that of the acceptor genome. We introduced GC-normalized relative codon frequencies as a measure to detect characteristic features of <it>P. pacificus </it>orphan genes that show no homology to other nematode genes. We found that atypical codon usage is particularly prevalent in <it>P. pacificus </it>orphans. By comparing codon usage profiles of 71 species, we detected the most significant enrichment in insect-like codon usage profiles. In cross-species comparisons, we identified 509 HGT candidates that show a significantly higher similarity to insect-like profiles than genes with nematode homologs. The most abundant gene family among these genes are non-LTR retrotransposons. Speculating that retrotransposons might have served as carriers of foreign genetic material, we found a significant local clustering tendency of orphan genes in the vicinity of retrotransposons.</p> <p>Conclusions</p> <p>Our study combined codon usage bias, phylogenetic analysis, and genomic colocalization into a general picture of the computational archaeology of the <it>P. pacificus </it>genome and suggests that a substantial fraction of the gene repertoire is of insect origin. We propose that the <it>Pristionchus</it>-beetle association has facilitated HGT and discuss potential vectors of these events.</p
- …