957 research outputs found

    Emotion and language: valence and arousal affect word recognition

    Get PDF
    Emotion influences most aspects of cognition and behavior, but emotional factors are conspicuously absent from current models of word recognition. The influence of emotion on word recognition has mostly been reported in prior studies on the automatic vigilance for negative stimuli, but the precise nature of this relationship is unclear. Various models of automatic vigilance have claimed that the effect of valence on response times is categorical, an inverted U, or interactive with arousal. In the present study, we used a sample of 12,658 words and included many lexical and semantic control factors to determine the precise nature of the effects of arousal and valence on word recognition. Converging empirical patterns observed in word-level and trial-level data from lexical decision and naming indicate that valence and arousal exert independent monotonic effects: Negative words are recognized more slowly than positive words, and arousing words are recognized more slowly than calming words. Valence explained about 2% of the variance in word recognition latencies, whereas the effect of arousal was smaller. Valence and arousal do not interact, but both interact with word frequency, such that valence and arousal exert larger effects among low-frequency words than among high-frequency words. These results necessitate a new model of affective word processing whereby the degree of negativity monotonically and independently predicts the speed of responding. This research also demonstrates that incorporating emotional factors, especially valence, improves the performance of models of word recognition

    The Appeal of Copycats When the Horizon is Wide

    Get PDF

    Modulation of taxonomic (versus thematic) similarity judgments and product choices by inducing local and global processing

    Get PDF
    Perceived similarity is influenced by both taxonomic and thematic relations. Assessing taxonomic relations requires comparing individual features of objects whereas assessing thematic relations requires exploring how objects functionally interact. These processes appear to relate to different thinking styles: abstract thinking and a global focus may be required to explore functional interactions whereas attention to detail and a local focus may be required to compare specific features. In four experiments we explored this idea by assessing whether a preference for taxonomic or thematic relations could be created by inducing a local or global perceptual processing style. Experiments 1–3 primed processing style via a perceptual task and used a choice task to examine preference for taxonomic (versus thematic) relations. Experiment 4 induced processing style and examined the effect on similarity ratings for pairs of taxonomic and thematically related items. In all cases processing style influenced preference for taxonomic/thematic relations

    Relationships Between Excessive Heat and Daily Mortality over the Coterminous U.S

    Get PDF
    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. Using National Land Data Assimilation System (NLDAS) meteorological reanalysis data, we have developed several measures of extreme heat to enable assessments of the impacts of heat on public health over the coterminous U.S. These measures include daily maximum and minimum air temperatures, daily maximum heat indices and a new heat stress variable called Net Daily Heat Stress (NDHS) that gives an integrated measure of heat stress (and relief) over the course of a day. All output has been created on the NLDAS 1/8 degree (approximately 12 km) grid and aggregated to the county level, which is the preferred geographic scale of analysis for public health researchers. County-level statistics have been made available through the Centers for Disease Control and Prevention (CDC) via the Wide-ranging Online Data for Epidemiologic Research (WONDER) system. We have examined the relationship between excessive heat events, as defined in eight different ways from the various daily heat metrics, and heat-related and all-cause mortality defined in CDC's National Center for Health Statistics 'Multiple Causes of Death 1999-2010' dataset. To do this, we linked daily, county-level heat mortality counts with EHE occurrence based on each of the eight EHE definitions by region and nationally for the period 1999-2010. The objectives of this analysis are to determine (1) whether heat-related deaths can be clearly tied to excessive heat events, (2) what time lags are critical for predicting heat-related deaths, and (3) which of the heat metrics correlates best with mortality in each US region. Results show large regional differences in the correlations between heat and mortality. Also, the heat metric that provides the best indicator of mortality varied by region. Results from this research will potentially lead to improvements in our ability to anticipate and mitigate any significant impacts of extreme heat events on health

    An Accurate Determination of the Exchange Constant in Sr_2CuO_3 from Recent Theoretical Results

    Full text link
    Data from susceptibility measurements on Sr_2CuO_3 are compared with recent theoretical predictions for the magnetic susceptibility of the antiferromagnetic spin-1/2 Heisenberg chain. The experimental data fully confirms the theoretical predictions and in turn we establish that Sr_2CuO_3 behaves almost perfectly like a one-dimensional antiferromagnet with an exchange coupling of J = 1700^{+150}_{-100}K.Comment: revised and reformatted paper with new title to appear in Phys. Rev B (Feb.1996). 3 pages (revtex) with 3 embedded figures (macro included). A complete postscript file is available from http://fy.chalmers.se/~eggert/expsusc.ps or by request from [email protected]

    The Concept of Sustainable Development and Its Impact on the Shaping of Modern International Relations through Global Agreements

    Get PDF
    The goal of this article is a depiction of the process of the molding of the concept of sustainable development as well as a look at the influence that this concept has exerted on contemporary international politics, especially taking into account agreements of worldwide scope. This article is also an effort at demonstrating that the foundations of the concept of sustainable development can be traced to certain economic theories. The final section of this article is devoted to the characteristics of individual conferences initiated by the United Nations in order to promote enduring and sustainable development on a world scale. Also presented are the achievements of the individual conferences and their roles in demarcating universally obligatory principles and standards of sustainable development.Celem niniejszego artykułu jest scharakteryzowanie genezy kształtowania się Koncepcji Zrównoważonego Rozwoju, a także wskazanie, jaki wpływ miała ona na ukształtowanie się stosunków międzynarodowych w zakresie ochrony środowiska i rozwiązywania problemów społecznych. Przedmiotem analizy są także teorie ekonomiczne, które stały się fundamentem dla wykrystalizowania się koncepcji zrównoważonego rozwoju. Poniższy artykuł jest także próbą wykazania, iż konferencje organizowane przez ONZ na rzecz trwałego i zrównoważonego rozwoju, stały się siła napędową do rozpowszechnienia tej koncepcji w skali światowej

    Linking Excessive Heat with Daily Heat-Related Mortality over the Coterminous United States

    Get PDF
    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981- 2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a 'heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km) much finer than that of GCMs, to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices, and a new heat stress variable developed as part of this research that gives an integrated measure of heat stress (and relief) over the course of a day. Comparisons are made between projected (2040 and 2090) and past (1990) heat stress statistics. Outputs are aggregated to the county level, which is a popular scale of analysis for public health interests. County-level statistics are made available to public health researchers by the Centers for Disease Control and Prevention (CDC) via the Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This addition of heat stress measures to CDC WONDER allows decision and policy makers to assess the impact of alternative approaches to optimize the public health response to EHEs. Through CDC WONDER, users are able to spatially and temporally query public health and heat-related data sets and create county-level maps and statistical charts of such data across the coterminous U.S
    corecore