638 research outputs found

    Low noise optical receivers

    Get PDF
    the paper describes low noise first stage optical receivers.Analysis of operating conditions affecting signal-to-noise ratio has been carried out.Each preamplifier was carefully optimised to work with particular type of the detector

    Applications of the Cracow X-ray microprobe in tomography

    Get PDF
    A nuclear microprobe at the IFJ PAN in Cracow has found numerous applications in different fields of research, mostly in biophysics, medical sciences, geology, and material research. In order to extend the research possibilities, a new X-ray microprobe was constructed. This new microprobe consists of three experimental lines dedicated to: (i) X-ray irradiation of biological specimens, (ii) elemental analysis of samples by micro X-ray fluorescence or total reflection X-ray fluorescence methods and (iii) computer microtomography. In this paper the computer microtomography line was described. The line consists of an open type Hamamatsu L9191 X-ray tube with microfocusing to about 2 μm, a high resolution X-ray sensitive CCD camera, and a precise goniometer composed of six piezoelectric motors. Depending on the required X-ray energy, the Hamamatsu tube is used with Ti, Mo, Ag, or W targets. A small focus size and short focus-to-object distance enable to obtain images of samples with a magnification of more than 1000× and resolution of the order of 2 μm. The computer microtomography measurements are carried out using home developed codes combined with commercial software. Details of the microprobe construction and preliminary results of the computer microtomography experiments are presented

    Preliminary investigations of elemental content, microporosity, and specific surface area of porous rocks using PIXE and X-ray microtomography techniques

    Get PDF
    Determination of physical properties of porous geological materials is of great importance for oil industry. The knowledge of rocks properties is usually obtained from porosity studies such as pore size distribution, specific surface area determination, and hydrodynamic permeability calculations. This study describes determination of elemental composition and measurements of the particular physical properties of geological samples (porous sandstone rocks) by means of the nuclear and X-ray microprobes at the Institute of Nuclear Physics, Polish Academy of Sciences in Kraków, Poland. The special emphasis has been put on the computed microtomography method. Measurements have been carried out in close cooperation with Department of Geophysics, FGGEP AGH in Kraków, Poland. Chemical composition of the Rotliegend sandstone rock samples (few millimeters diameter), extracted from a borehole at 2679.6 m, 2741.4 m and 2742.4 m depth have been investigated using the 2.2 MeV proton beam (proton induced X-ray emission technique). Next, measurements of the porosity and the specific surface area of the pore space have been carried out using the X-ray microtomography technique. Basing on microtomographic data obtained with the high spatial resolution, simulations of the fluid dynamic in the void space of porous media have been carried out. Lattice Boltzmann method in the 3DQ19 geometrical model has been used in order to predict the hydraulic permeability of the media. In order to avoid viscosity-permeability dependence the multiple-relaxation-time model with half-way bounce back boundary conditions has been used. Computing power-consuming processing has been performed with the use of modern grid infrastructure

    Illness tracking in SARS-CoV-2 tested persons using a smartphone app: a non-interventional, prospective, cohort study

    Full text link
    There are few data on the range and severity of symptoms of SARS-CoV-2 infection or the impact on life quality in infected, previously healthy, young adults such as Swiss Armed Forces personnel. It is also unclear if an app can be used to remotely monitor symptoms in persons who test positive. Using a smartphone app called ITITP (Illness Tracking in Tested Persons) and weekly pop-up questionnaires, we aimed to evaluate the spectrum, duration, and impact of symptoms reported after a positive SARS-CoV-2 test according to sex, age, location, and comorbidities, and to compare these to responses from persons who tested negative. We followed up 502 participants (57% active participation), including 68 (13.5%) positive tested persons. Hospitalisation was reported by 6% of the positive tested participants. We found that positives reported significantly more symptoms that are typical of COVID-19 compared to negatives. These symptoms with odds ratio (OR > 1) were having difficulty breathing (OR 3.35; 95% CI: 1.16, 9.65; p = 0.03), having a reduced sense of taste (OR 5.45; 95% CI: 1.22, 24.34; p = 0.03) and a reduced sense of smell (OR 18.24; 95% CI: 4.23, 78.69; p < 0.001). Using a random forest model, we showed that tiredness was the single symptom that was rated as having a significant impact on daily activities, whereas the other symptoms, although frequent, had less impact. The study showed that the use of an app was feasible to remotely monitor symptoms in persons infected with SARS-CoV-2 and could be adapted for other settings and new pandemic phases such as the current Omicron wave

    The D2-Law of Droplet Evaporation When Calculating the Droplet Evaporation Process of Liquid Containing Solid State Catalyst Particles

    Get PDF
    The review presents the D2-law of droplet evaporation, which is used to describe the spraying process involving the evaporation of droplets. This law, the subject of numerous publications, can be successfully applied to describe the droplet evaporation process under various conditions, including the calculations of the process of feeding the boiler with a liquid that contains catalyst particles. To date, not a lot of work has been devoted to this issue. The paper is a continuation of previous research concerning the spraying of liquids with a catalyst, which improves the efficiency of the process. The conducted analysis showed that the experimental data from previously published work are very compatible with the data obtained from the D2-law of droplet evaporation. At the standard speed of about 20 m/s of an aerosol flowing through a dust duct, droplets in the stream should be observed up to a distance of 1 m from the outlet of the apparatus supplying the system. Under such flow conditions, a droplet’s lifetime must be above 0.05 s. The dependence between a droplet’s lifetime and its diameter and temperature was determined. The obtained results confirmed that the effective droplet diameter is above 30 µm. Such droplets must be generated and then fed to the boiler for the catalyst to work properly. This law is an engineering approach to the problem, which uses relatively simple model equations in order to determine the evaporation time of a droplet

    3D diffractive imaging of nanoparticle ensembles using an X-ray laser

    Get PDF
    We report the 3D structure determination of gold nanoparticles (AuNPs) by X-ray single particle imaging (SPI). Around 10 million diffraction patterns from gold nanoparticles were measured in less than 100 hours of beam time, more than 100 times the amount of data in any single prior SPI experiment, using the new capabilities of the European X-ray free electron laser which allow measurements of 1500 frames per second. A classification and structural sorting method was developed to disentangle the heterogeneity of the particles and to obtain a resolution of better than 3 nm. With these new experimental and analytical developments, we have entered a new era for the SPI method and the path towards close-to-atomic resolution imaging of biomolecules is apparent

    Salt Dependence of the Tribological Properties of a Surface-Grafted Weak Polycation in Aqueous Solution

    Get PDF
    The nanoscopic adhesive and frictional behaviour of end-grafted poly[2-(dimethyl amino)ethyl methacrylate] (PDMAEMA) films (brushes) in contact with gold- or PDMAEMA-coated atomic force microscope tips in potassium halide solutions with different concentrations up to 300 mM is a strong function of salt concentration. The conformation of the polymers in the brush layer is sensitive to salt concentration, which leads to large changes in adhesive forces and the contact mechanics at the tip–sample contact, with swollen brushes (which occur at low salt concentrations) yielding large areas of contact and friction–load plots that fit JKR behaviour, while collapsed brushes (which occur at high salt concentrations) yield sliding dominated by ploughing, with conformations in between fitting DMT mechanics. The relative effect of the different anions follows the Hofmeister series, with I − collapsing the brushes more than Br − and Cl − for the same salt concentration

    Listeriolysin O Is Necessary and Sufficient to Induce Autophagy during Listeria monocytogenes Infection

    Get PDF
    Recent studies have suggested that autophagy is utilized by cells as a protective mechanism against Listeria monocytogenes infection.However we find autophagy has no measurable role in vacuolar escape and intracellular growth in primary cultured bone marrow derived macrophages (BMDMs) deficient for autophagy (atg5-/-). Nevertheless, we provide evidence that the pore forming activity of the cholesterol-dependent cytolysin listeriolysin O (LLO) can induce autophagy subsequent to infection by L. monocytogenes. Infection of BMDMs with L. monocytogenes induced microtubule-associated protein light chain 3 (LC3) lipidation, consistent with autophagy activation, whereas a mutant lacking LLO did not. Infection of BMDMs that express LC3-GFP demonstrated that wild-type L. monocytogenes was encapsulated by LC3-GFP, consistent with autophagy activation, whereas a mutant lacking LLO was not. Bacillus subtilis expressing either LLO or a related cytolysin, perfringolysin O (PFO), induced LC3 colocalization and LC3 lipidation. Further, LLO-containing liposomes also recruited LC3-GFP, indicating that LLO was sufficient to induce targeted autophagy in the absence of infection. The role of autophagy had variable effects depending on the cell type assayed. In atg5-/- mouse embryonic fibroblasts, L. monocytogenes had a primary vacuole escape defect. However, the bacteria escaped and grew normally in atg5-/- BMDMs.We propose that membrane damage, such as that caused by LLO, triggers bacterial-targeted autophagy, although autophagy does not affect the fate of wild-type intracellular L. monocytogenes in primary BMDMs
    corecore