671 research outputs found

    Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates)

    Get PDF
    To examine the grazing effects of copepod-dominated mesozooplankton on heterotrophic microbial communities, four mesocosm experiments using gradients of zooplankton abundance were carried out at a coastal marine site. The responses of different protist groups (nanoflagellates, ciliates) and bacterioplankton in terms of abundance and additionally, for bacteria, diversity, production, and exoenzymatic activity, were monitored during 1 week of incubation. Independent of the initial experimental abiotic conditions and the dominating copepod species, zooplankton caused order-of-magnitude changes in microbial functional groups in a clear community-wide four-link trophic cascade. The strongest predatory effects were observed for protist concentrations, thus generating inverse relationships between mesozooplankton and ciliates and between ciliates and nanoplankton. Copepod grazing effects propagated even further, not only reducing the abundance, production, and hydrolytic activity of bacterioplankton but also increasing bacterial diversity. The overall strength of this trophic cascade was dampened with respect to bacterial numbers, but more pronounced with respect to bacterial diversity and activity. High predation pressure by heterotrophic nanoflagellates, realized at the highest copepod abundance, was probably the underlying mechanism for these structural changes in the bacterial assemblages. Our results thus suggest a mechanism by which changes in higher trophic levels of marine plankton indirectly affect prokaryotic assemblages and microbially mediated ecosystem functions

    Selection and counterselection of the rtI233V adefovir resistance mutation during antiviral therapy

    Get PDF
    Recently, we reported on three patients with chronic hepatitis B virus (HBV) infection for whom adefovir (ADF) therapy virologically failed, most likely due to a preexisting rtI233V HBV polymerase mutation. Here, we describe two further patients with chronic HBV infection who were found to develop the rtI233V mutation after initiation of ADF therapy. These patients represent the first cases known so far in which the rtI233V ADF resistance mutation evolved under persistent HBV replication during HBV therapy with ADF. Interestingly, one of the previously described patients, who was initially successfully switched from ADF to tenofovir (TDF) and became virologically suppressed subsequently, experienced a moderate but remarkable rebound of HBV viremia after switching from TDF to entecavir, due to the emergence of renal toxicity. Thus, we provide evidence for the selection and counterselection of the rtI233V ADF resistance mutation during antiviral therapy

    Simultaneous observations of NLCs and MSEs at midlatitudes: implications for formation and advection of ice particles

    Get PDF
    We combined ground-based lidar observations of noctilucent clouds (NLCs) with collocated, simultaneous radar observations of mesospheric summer echoes (MSEs) in order to compare ice cloud altitudes at a midlatitude site (KĂŒhlungsborn, Germany, 54°&thinsp;N, 12°&thinsp;E). Lidar observations are limited to larger particles ( &gt; 10&thinsp;nm), while radars are also sensitive to small particles ( &lt; 10&thinsp;nm), but require sufficient ionization and turbulence at the ice cloud altitudes. The combined lidar and radar data set thus includes some information on the size distribution within the cloud and through this on the history of the cloud. The soundings for this study are carried out by the IAP Rayleigh–Mie–Raman (RMR) lidar and the OSWIN VHF radar. On average, there is no difference between the lower edges (zlowNLC and zlowMSE). The mean difference of the upper edges zupNLC and zupMSE is  ∌ 500&thinsp;m, which is much less than expected from observations at higher latitudes. In contrast to high latitudes, the MSEs above our location typically do not reach much higher than the NLCs. In addition to earlier studies from our site, this gives additional evidence for the supposition that clouds containing large enough particles to be observed by lidar are not formed locally but are advected from higher latitudes. During the advection process, the smaller particles in the upper part of the cloud either grow and sediment, or they sublimate. Both processes result in a thinning of the layer. High-altitude MSEs, usually indicating nucleation of ice particles, are rarely observed in conjunction with lidar observations of NLCs at KĂŒhlungsborn.</p

    Build-up and decline of organic matter during PeECE III

    Get PDF
    Increasing atmospheric carbon dioxide (CO2) concentrations due to anthropogenic fossil fuel combustion are currently changing the ocean's chemistry. Increasing oceanic [CO2] and consequently decreasing seawater pH have the potential to significantly impact marine life. Here we describe and analyze the build-up and decline of a natural phytoplankton bloom initiated during the 2005 mesocosm Pelagic Ecosystem CO2 Enrichment study (PeECE III). The draw-down of inorganic nutrients in the upper surface layer of the mesocosms was reflected by a concomitant increase of organic matter until day t11, the peak of the bloom. From then on, biomass standing stocks steadily decreased as more and more particulate organic matter was lost into the deeper layer of the mesocosms. We show that organic carbon export to the deeper layer was significantly enhanced at elevated CO2. This phenomenon might have impacted organic matter remineralization leading to decreased oxygen concentrations in the deeper layer of the high CO2 mesocosms as indicated by deep water ammonium concentrations. This would have important implications for our understanding of pelagic ecosystem functioning and future carbon cycling

    Bose-Hubbard model with occupation dependent parameters

    Full text link
    We study the ground-state properties of ultracold bosons in an optical lattice in the regime of strong interactions. The system is described by a non-standard Bose-Hubbard model with both occupation-dependent tunneling and on-site interaction. We find that for sufficiently strong coupling the system features a phase-transition from a Mott insulator with one particle per site to a superfluid of spatially extended particle pairs living on top of the Mott background -- instead of the usual transition to a superfluid of single particles/holes. Increasing the interaction further, a superfluid of particle pairs localized on a single site (rather than being extended) on top of the Mott background appears. This happens at the same interaction strength where the Mott-insulator phase with 2 particles per site is destroyed completely by particle-hole fluctuations for arbitrarily small tunneling. In another regime, characterized by weak interaction, but high occupation numbers, we observe a dynamical instability in the superfluid excitation spectrum. The new ground state is a superfluid, forming a 2D slab, localized along one spatial direction that is spontaneously chosen.Comment: 16 pages, 4 figure

    Comparison of seven modelling algorithms for γ-aminobutyric acid–edited proton magnetic resonance spectroscopy

    Get PDF
    Edited MRS sequences are widely used for studying γ-aminobutyric acid (GABA) in the human brain. Several algorithms are available for modelling these data, deriving metabolite concentration estimates through peak fitting or a linear combination of basis spectra. The present study compares seven such algorithms, using data obtained in a large multisite study. GABA-edited (GABA+, TE = 68 ms MEGA-PRESS) data from 222 subjects at 20 sites were processed via a standardised pipeline, before modelling with FSL-MRS, Gannet, AMARES, QUEST, LCModel, Osprey and Tarquin, using standardised vendor-specific basis sets (for GE, Philips and Siemens) where appropriate. After referencing metabolite estimates (to water or creatine), systematic differences in scale were observed between datasets acquired on different vendors' hardware, presenting across algorithms. Scale differences across algorithms were also observed. Using the correlation between metabolite estimates and voxel tissue fraction as a benchmark, most algorithms were found to be similarly effective in detecting differences in GABA+. An interclass correlation across all algorithms showed single-rater consistency for GABA+ estimates of around 0.38, indicating moderate agreement. Upon inclusion of a basis set component explicitly modelling the macromolecule signal underlying the observed 3.0 ppm GABA peaks, single-rater consistency improved to 0.44. Correlation between discrete pairs of algorithms varied, and was concerningly weak in some cases. Our findings highlight the need for consensus on appropriate modelling parameters across different algorithms, and for detailed reporting of the parameters adopted in individual studies to ensure reproducibility and meaningful comparison of outcomes between different studies.publishedVersio

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    Effects of rising temperature on pelagic biogeochemistry in mesocosm systems: a comparative analysis of the AQUASHIFT Kiel experiments

    Get PDF
    A comparative analysis of data, obtained during four indoor-mesocosm experiments with natural spring plankton communities from the Baltic Sea, was conducted to investigate whether biogeochemical cycling is affected by an increase in water temperature of up to 6 °C above present-day conditions. In all experiments, warming stimulated in particular heterotrophic bacterial processes and had an accelerating effect on the temporal development of phytoplankton blooms. This was also mirrored in the build-up and partitioning of organic matter between particulate and dissolved phases. Thus, warming increased both the magnitude and rate of dissolved organic carbon (DOC) build-up, whereas the accumulation of particulate organic carbon (POC) and phosphorus (POP) decreased with rising temperature. In concert, the observed temperature-mediated changes in biogeochemical components suggest strong shifts in the functioning of marine pelagic food webs and the ocean’s biological carbon pump, hence providing potential feedback mechanisms to Earth’s climate system
    • 

    corecore