234 research outputs found

    Why can they fly and swim? Dynamic similarity between flight and swimming in Rhinoceros auklets

    Get PDF
    第3回極域科学シンポジウム/第34回極域生物シンポジウム 11月26日(月) 国立極地研究所 3階ラウン

    A clear separation of foraging areas between two neighboring colonies of Adelie Penguins observed in a year of extensive sea ice cover

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions : [OB] Polar Biology, Wed. 4 Dec. / Entrance Hall (1st floor) , National Institute of Polar Researc

    Drivers of Daily Routines in an Ectothermic Marine Predator: Hunt Warm, Rest Warmer?

    Get PDF
    Animal daily routines represent a compromise between maximizing foraging success and optimizing physiological performance, while minimizing the risk of predation. For ectothermic predators, ambient temperature may also influence daily routines through its effects on physiological performance. Temperatures can fluctuate significantly over the diel cycle and ectotherms may synchronize behaviour tomatch thermal regimes in order to optimize fitness. We used bio-logging to quantify activity and body temperature of blacktip reef sharks (Carcharhinus melanopterus) at a tropical atoll. Behavioural observations were used to concurrently measure bite rates in herbivorous reef fishes, as an index of activity for potential diurnal prey. Sharks showed early evening peaks in activity, particularly during ebbing high tides, while body temperatures peaked several hours prior to the period of maximal activity. Herbivores also displayed peaks in activity several hours earlier than the peaks in shark activity. Sharks appeared to be least active while their body temperatures were highest and most active while temperatures were cooling, although we hypothesize that due to thermal inertia they were still warmer than their smaller prey during this period. Sharksmay be most active during early evening periods as they have a sensory advantage under low light conditions and/ or a thermal advantage over cooler prey. Sharks swaminto shallow water during daytime low tide periods potentially to warm up and increase rates of digestion before the nocturnal activity period, which may be a strategy to maximize ingestion rates. Hunt warm, rest warmer may help explain the early evening activity seen in other ectothermic predators

    Activity seascapes highlight central place foraging strategies in marine predators that never stop swimming

    Get PDF
    Background: Central place foragers (CPF) rest within a central place, and theory predicts that distance of patches from this central place sets the outer limits of the foraging arena. Many marine ectothermic predators behave like CPF animals, but never stop swimming, suggesting that predators will incur ‘travelling’ costs while resting. Currently, it is unknown how these CPF predators behave or how modulation of behavior contributes to daily energy budgets. We combine acoustic telemetry, multi-sensor loggers, and hidden Markov models (HMMs) to generate ‘activity seascapes’, which combine space use with patterns of activity, for reef sharks (blacktip reef and grey reef sharks) at an unfished Pacific atoll. Results: Sharks of both species occupied a central place during the day within deeper, cooler water where they were less active, and became more active over a larger area at night in shallower water. However, video cameras on two grey reef sharks revealed foraging attempts/success occurring throughout the day, and that multiple sharks were refuging in common areas. A simple bioenergetics model for grey reef sharks predicted that diel changes in energy expenditure are primarily driven by changes in swim speed and not body temperature. Conclusions: We provide a new method for simultaneously visualizing diel space use and behavior in marine predators, which does not require the simultaneous measure of both from each animal. We show that blacktip and grey reef sharks behave as CPFs, with diel changes in activity, horizontal and vertical space use. However, aspects of their foraging behavior may differ from other predictions of traditional CPF models. In particular, for species that never stop swimming, patch foraging times may be unrelated to patch travel distance

    Search for Two Nucleon States by the ^<12>C (γ, pn) ^<10>B Reaction(I. Nuclear Physics)

    Get PDF
    We performed the ^C(γ, pn) experiment using tagged photons in an energy range from 30 to 120 MeV. Protons and neutrons were detected by a range telescope and NE213 liquid scintillators, respectively. Missing energy spectra of the ^C(γ, pn) reaction were deduced to search for the two nucleon excited states. In this report, we show the experimental setup for the ^C(γ, pn) reaction using the tagged photon beams. The preliminary results are shown and discussed. The data analysis is in progress

    Lrmp/Jaw1 is Expressed in Sweet, Bitter, and Umami Receptor–Expressing Cells

    Get PDF
    Inositol 1,4,5-triphosphate–mediated calcium (IP3-Ca2+) signal cascade is an essential process in sweet, bitter, and umami taste signal transduction. Although the main components of this cascade have been identified, the candidate regulators of them in taste tissues are still unclear. In an effort to identify genes involved in taste signal transduction, we found that a gene encoding lymphoid-restricted membrane protein (Lrmp/Jaw1) was expressed in mouse taste tissues. Here we report that Lrmp/Jaw1 is specifically expressed in sweet, bitter, and umami taste receptor–expressing cells of mouse circumvallate, foliate, and fungiform papillae. In addition to this specific expression patterns, we found that Lrmp/Jaw1 is associated with type III IP3 receptor (IP3R3) via its coiled-coil domain in the COS7 heterologous expression system. These results raise the possibility that Lrmp/Jaw1 interacts with IP3R3 in taste cells and suggest an important role for Lrmp/Jaw1 in the IP3-Ca2+ signal cascade in sweet, bitter, and umami taste signal transduction

    Double inhibition of XIAP and Bcl-2 axis is beneficial for retrieving sensitivity of renal cell cancer to apoptosis

    Get PDF
    Renal cell carcinoma (RCC) is known to be resistant to chemo- and radiotherapy due to a high apoptotic threshold. Smac and XIAP (X-linked inhibitor of apoptosis protein) proteins were detected in all RCC cell lines and tissue samples examined. We modulated the function of XIAP, either through its constitutional downregulation with an shRNA vector or by applying a Smac-mimicking peptide. Among RCC cell lines, Caki1 expresses the highest levels of XIAP. We transfected Caki1 with XIAP-targeting shRNA vector and generated stable clones. XIAP was knocked down by RNA interference in clone no. 14 by 81.6% and in clone no. 19 by 85.3%. Compared to the parental and mock-transfected cells, neither clone was more sensitive to conventional chemotherapeutic agents, but both clones were more susceptible to Fas stimulation (P<0.0001) and to pharmacological Bcl-2 inhibition (P<0.0001), as well as to a combination of the two (P<0.0001). Mature Smac binds to XIAP via the N-terminal residues, disrupting its interaction with caspases and promoting their activity. We determined that exposure of Caki1 cells to Smac-N7 peptide (AVPIAQK) resulted in a slight but significant decrease in viability (P=0.0031) and potentiated cisplatin's effect (P=0.0027). In contrast with point targeting of XIAP by shRNA, Smac-N7 peptide is active against several IAP (inhibitor of apoptosis protein) family members, which can explain its role in sensitising cells to cisplatin. Our results suggest that multiple targeting of both Bcl-2 and XIAP or, alternatively, of several IAP family members by the Smac-N7 peptide is a potent way to overcome resistance of RCC to apoptosis-triggering treatment modalities, and might be a new tool for molecular targeted therapy

    Experimental Rugged Fitness Landscape in Protein Sequence Space

    Get PDF
    The fitness landscape in sequence space determines the process of biomolecular evolution. To plot the fitness landscape of protein function, we carried out in vitro molecular evolution beginning with a defective fd phage carrying a random polypeptide of 139 amino acids in place of the g3p minor coat protein D2 domain, which is essential for phage infection. After 20 cycles of random substitution at sites 12–130 of the initial random polypeptide and selection for infectivity, the selected phage showed a 1.7×10(4)-fold increase in infectivity, defined as the number of infected cells per ml of phage suspension. Fitness was defined as the logarithm of infectivity, and we analyzed (1) the dependence of stationary fitness on library size, which increased gradually, and (2) the time course of changes in fitness in transitional phases, based on an original theory regarding the evolutionary dynamics in Kauffman's n-k fitness landscape model. In the landscape model, single mutations at single sites among n sites affect the contribution of k other sites to fitness. Based on the results of these analyses, k was estimated to be 18–24. According to the estimated parameters, the landscape was plotted as a smooth surface up to a relative fitness of 0.4 of the global peak, whereas the landscape had a highly rugged surface with many local peaks above this relative fitness value. Based on the landscapes of these two different surfaces, it appears possible for adaptive walks with only random substitutions to climb with relative ease up to the middle region of the fitness landscape from any primordial or random sequence, whereas an enormous range of sequence diversity is required to climb further up the rugged surface above the middle region
    corecore