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RESEARCH Open Access

Activity seascapes highlight central place
foraging strategies in marine predators that
never stop swimming
Yannis P. Papastamatiou1, Yuuki Y. Watanabe2,3, Urška Demšar4* , Vianey Leos-Barajas5, Darcy Bradley6,
Roland Langrock7, Kevin Weng8, Christopher G. Lowe9, Alan M. Friedlander10,11 and Jennifer E. Caselle12

Abstract

Background: Central place foragers (CPF) rest within a central place, and theory predicts that distance of patches from
this central place sets the outer limits of the foraging arena. Many marine ectothermic predators behave like CPF
animals, but never stop swimming, suggesting that predators will incur ‘travelling’ costs while resting. Currently, it is
unknown how these CPF predators behave or how modulation of behavior contributes to daily energy budgets. We
combine acoustic telemetry, multi-sensor loggers, and hidden Markov models (HMMs) to generate ‘activity seascapes’,
which combine space use with patterns of activity, for reef sharks (blacktip reef and grey reef sharks) at an unfished
Pacific atoll.

Results: Sharks of both species occupied a central place during the day within deeper, cooler water where they were
less active, and became more active over a larger area at night in shallower water. However, video cameras on two
grey reef sharks revealed foraging attempts/success occurring throughout the day, and that multiple sharks were
refuging in common areas. A simple bioenergetics model for grey reef sharks predicted that diel changes in energy
expenditure are primarily driven by changes in swim speed and not body temperature.

Conclusions: We provide a new method for simultaneously visualizing diel space use and behavior in marine
predators, which does not require the simultaneous measure of both from each animal. We show that blacktip and
grey reef sharks behave as CPFs, with diel changes in activity, horizontal and vertical space use. However, aspects of
their foraging behavior may differ from other predictions of traditional CPF models. In particular, for species that never
stop swimming, patch foraging times may be unrelated to patch travel distance.

Keywords: Sharks, Acceleration, Hidden Markov models, Coral reefs, Foraging, Telemetry

Background
Central place foraging (CPF) is a ubiquitous behavior seen
across animal groups ranging from insects, to birds, and
humans [1]. Unlike random movements within a home
range, CPF behavior consists of periodic and predictable
movements to and from a central place, often with mul-
tiple individuals sharing the central place [1]. CPF animals
tend to rest at the central place, with their energy costs in-
creasing as they travel greater distances from this location
[1, 2]. As such, the costs associated with travel distance to

the patch should define the limits of the animals foraging
range from the central place [2, 3]. CPF behavior can lead
to heterogeneity in habitat or prey distribution as the ani-
mal’s foraging rates will likely vary with distance from the
central place [4, 5]. As patch distance to the central place
increases, travel costs also increase, and the animal should
spend more time foraging at the patch [1, 4].
A key assumption of CPF theory is that an animal

rests at the central place, and foraging costs increase
with travel distance to a feeding patch. Yet, there are
many species of marine predators that exhibit CPF-like
behavior, but never stop swimming, and never truly rest.
For these animals, energy costs may be independent of
travel distance to the patch, and simply a function of
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swim speeds. Such predators include large coral
reef-associated fishes (sharks and teleosts), which swim
within a relatively small core area during the day,
and move over an expanded area at night, with period-
icity of movements related to diel or tidal cycles [6–9].
Marine animals also move in a three-dimensional (3D)
environment and CPF behavior can include a vertical
component as well as a horizontal one, with individuals
performing diel vertical migrations (DVM) relative to
the central place [10–12]. While few studies have mea-
sured actual activity and swim speeds, some tropical reef
sharks display patterns of activity that also vary with diel
and tidal cycles [13–17]. However, why predators that
do not use a shelter or ever stop swimming require a
central place, is unclear.
CPF animals that never stop swimming are almost ex-

clusively ectotherms, so metabolic rates are sensitive to
changes in ambient temperature. At any particular time,
routine metabolic rates should be a function of body
temperature, movement speed, and other aspects of the
movement process (e.g. turning costs more than straight
line swimming [18]). While the animal may not stop
swimming, they can establish the central place in cooler
waters where metabolic rates are reduced. If the animal
simultaneously maintains low activity in the central
place while cooler, then energy costs may be essentially
similar to ‘resting’ [10]. In addition to changes in body
temperature, routine metabolic rates can be modulated
via changes in swim speed. Hence, the energetics of CPF
in these animals must consider body temperature and
movement rates.
Accelerometers have become popular for measuring

both the activity and energy requirements of
free-ranging marine animals [14, 19–21]. Accelerometer
data can be combined with information about the geo-
graphic location of the animal to generate a spatial rep-
resentation of the animal’s energy costs [19–21].
However, it is difficult to separate areas of high-energy
expenditure (e.g. traversing through an energetically ex-
pensive habitat) from areas of high animal activity re-
lated to specific behaviors (e.g. foraging) within the
landscape, especially for animals whose behaviors cannot
be easily defined from sensor measurements (e.g. con-
tinuously swimming fish). For our general case of CPF
foragers, we are interested in how the predator’s foraging
activity varies spatially in relation to the central place.
This challenge is further complicated in fishes because
space use and activity are often measured at different
temporal scales, due to limitations of tagging technology.
Movements can be recorded via telemetry over multiple
years, while fine-scale behaviors from accelerometers are
recorded over time-frames of days to weeks. The diel be-
havior of CPF animals is likely to be predictable, suggest-
ing that measurements made over shorter time periods

are representative of long-term behavior [14]. We took
advantage of this predictability to develop a new spatial
representation of activity we term an ‘activity seascape’,
for marine predators which show CPF behavior. The ac-
tivity seascape combines long-term patterns of space use
derived from acoustic telemetry data with the diel prob-
ability of being more or less active, which is based on
statistical time-series models inferred from short deploy-
ment accelerometers [22]. The seascapes allow the loca-
tions/times where high activity may be strongest/
weakest to be identified without requiring space use and
activity of individuals to be measured simultaneously.
We use multi-sensor loggers and statistical time-series

models to build activity seascapes for two species of reef
shark (blacktip reef sharks (Carcharhinus melanopterus),
and grey reef sharks (C. amblyrhynchos)), whose move-
ments appear similar to a CPF as they use smaller areas
during the day than at night [7–9, 12, 14, 23]. We also
used these activity seascapes to better understand the
dynamics of CPF in animals that never stop swimming.
Specifically, we predict that sharks use a central place
during the day while in deeper and cooler water where
they decrease activity and reduce energy costs. We pre-
dict they move over a larger area at night into shallower
water, where they become more active. We then build a
simple bioenergetics model for grey reef sharks to pre-
dict the relative contribution of body temperature and
swim speed to daily energy budget. We further predict
that grey reef sharks will maintain lower body tempera-
tures within their central place as a tactic to reduce
‘travel costs’ within their refuge.

Methods
Study site
Research was conducted at Palmyra Atoll (5°54’ N; 162°05’
W), located in the central Pacific Ocean. Palmyra has been
a U.S. federal wildlife refuge since 2001, with only a re-
search station housing a small number of scientists and
staff. The atoll consists of two lagoons, surrounded by
sandflats and backreefs, which transition to forereef habi-
tats (see Additional file 1: Appendix S1). Due to its pro-
tected status, large shark populations are found at the atoll
[24]. Further details of the site can be found in [9, 14].

Patterns of activity

Data-loggers The first component of our study relates
to how shark activity varies throughout the diel and tidal
cycles, and how it varies by depth and water
temperature. In order to quantify behavior, we tagged 5
blacktip and 5 grey reef sharks with external
data-loggers (ORI400-D3GT loggers, 12-mm diameter,
45-mm length, and 9 g; Little Leonardo Co., Tokyo,
Japan) in July 2013. Sensors measured 3D acceleration
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(sampled at 20 Hz), swimming depth, water temperature
(1 Hz), and some animals were also fit with a speed sen-
sor (1 Hz, three grey reef sharks) and video camera (one
blacktip, two grey reef sharks, Table 1). We used
DVL400 video cameras (recording duration 5–11 h) that
recorded at 640 × 480 pixels at 30 frames/second. The
video cameras were programmed to turn on the day
after the animal was released, to avoid the period of
stress associated with tagging. Cameras turned on at
07:00–08:00 and recorded continuously until the battery
ran out (5 h for the blacktip, 11 h each for the grey reef
sharks, with the difference due to camera battery size).
Loggers and cameras were embedded in copolymer foam
floats attached to the dorsal fin via tie wraps, and a
time-release mechanism caused the package to detach
3–5 days after deployment. Tags floated to the surface
where an embedded VHF transmitter enabled us to lo-
cate and retrieve them.

Analysis of shark activity We filtered the static contri-
bution of gravity from raw acceleration data, and then
calculated overall dynamic body acceleration (ODBA,
[25]). ODBA was used as a measure of activity as it in-
corporates tail beat frequency as well as activity along
other body axes. However, being time series data, ODBA
values are highly correlated such that inferences based
on statistical models that do not take this key feature
into account will usually be invalid. Furthermore, the
autocorrelation structure itself will provide interesting
behavioral information as the probability of the animal
being active is likely to be a function of how active it
was previously. Understanding the biological importance
of changes in ODBA in animals that swim continuously
is difficult as there is no true ‘resting’ period. We were
interested in periods of increased activity, particularly
‘bursts’ which could be indicative of foraging behavior.
Hidden Markov models (HMMs) are stochastic time

series models where observed data (e.g. travel speed,
depth, ODBA) are assumed to be driven by an under-
lying hidden process. We assume that the hidden
process can be in either of N = 2 states, roughly corre-
sponding to behavioral states, which we label ‘relatively
high activity’ and ‘relatively low activity’, respectively.

The observations can be considered noisy measurements
of the behavioral state, which cannot be explicitly ob-
served [22, 26]. Traditionally, HMMs have inferred be-
havioral states from the movement process itself (e.g.
rate of movement, turning angles), but more recently
have been used with behavioral data and ODBA specific-
ally [22]. We developed a 2-state HMM, where sharks
were in either a low state of activity (state 1) or high
state of activity (State 2), based on ODBA data from ac-
celerometers. We could then compute probabilities of
sharks changing or remaining within behavioral states
based on time of day, tidal state, or swimming depth and
water temperature. ODBA values were averaged over 1 s
intervals before applying the HMMs, based on observa-
tions of behaviors from video footage (see below). We
removed the first 4 h of data from each animal so that
we did not infer behavior when the animals may still
have been highly stressed. All HMMs were built in the
statistical environment R using customized code. All
HMM details can be found in Additional file 2: Appen-
dix S2.
The HMMs provide a data-driven, objective approach

to analyzing acceleration data, but we still cannot iden-
tify which specific behavior (e.g. feeding, predator avoid-
ance) sharks perform while within the various states. We
had the unique opportunity to correlate the results of
the HMM with the simultaneously collected 22 h of
video obtained from two grey reef sharks. Video data
allowed us to see what the sharks were doing (and in
which habitats) when inferred by the HMM to be in cer-
tain states, providing validation for our interpretation of
the model. We first observed all 22 h of video noting
times of foraging, increased activity (both of the individ-
ual shark and conspecifics) as well as the presence of
other sharks. For those specific time periods, we could
then compare observations with the behavioral state pre-
dicted by the HMM.
We also analyzed swim speed data in grey reef sharks

as a direct measure of energy expenditure. To explore
diel changes in swim speed, we constructed generalized
additive models (GAMs) for each individual grey reef
shark (N = 3) using hourly mean swim speed data. Speed
will still likely suffer from serial correlation, which we

Table 1 Details of sharks tagged with data-loggers or acoustic transmitters. BLT (blacktip reef shark), GR (grey reef shark), TL (Total
Length)

Tag Type BLT TL range (cm) Sex (M:F) GR TL range (cm) Sex (M:F)

1) Data-logger 4 113–127 0:4 4 149–159 0:4

Speed 2 113, 127 3 154–159

Video 1 127 2 154–158

2) Acoustic transmitters 20 105–133 0:20 43 107–168 13:30

Depth/temperature 9 105–126 13 107–168 4:9

Acceleration/depth 6 105–133 0
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accounted for by including an AR(1) (first-order
auto-regressive) process with time as the position vari-
able. The correlation at lag = 1 was included in the
model to specify the correlation structure. The GAM
was constructed with a Gaussian error distribution and
time of day was modeled with a cyclic smooth spline.
Model fit was assessed by examining residual diagnostic
plots, and Akaike’s information criterion [27] (AIC) was
used to assess model performance against a null model
(intercept only), with improved model fit indicated by a
minimum ΔAIC value > 3 [28]. GAM analyses were con-
ducted in R using the mgcv package.

Patterns of space use

Acoustic telemetry We quantified reef shark space use
patterns using acoustic telemetry methods. Between 2010
and 2014, sharks were caught on hook and line and surgi-
cally implanted with an acoustic transmitter (V16, 69 kHz,
Vemco ltd, Nova Scotia). A small incision was made on
the ventral surface, the transmitter was inserted into the
body cavity and a single suture was used to close the inci-
sion. The sharks were measured, sexed, externally dart
tagged and released. These individuals were not the same
sharks as those tagged with data-loggers above, although
there was temporal overlap between periods of data col-
lection (i.e. individuals were being tracked during the
same time when sharks were carrying loggers). We acous-
tically tagged a total of 20 blacktip reef sharks, and 43 grey
reef sharks. Of those, 9 blacktip reef sharks and 13 grey
reef sharks were tagged with V16 PT transmitters that also
measured pressure (depth) and body temperature, and 6
blacktip reef sharks were tagged with V13 AP transmitters
that measured 3D acceleration in addition to depth.
Transmitters were detected by an array of up to 70 sub-
surface omni-directional acoustic receivers (VR2W) de-
ployed throughout the atoll [14]. Every time a shark swam
within range of the receiver, the date/time of detection,
along with swimming depth and body temperature (for
those individuals with PT tags) were recorded. We down-
loaded receivers annually. Receiver detection range can
vary by habitat and range tests of a subsample of receivers
showed an approximate range of 250 m on backreefs and
close to 500 m on forereef habitats. Note that blacktip reef
shark acceleration, depth, and body temperatures were an-
alyzed in [14].
We calculated shark spatial utilization distributions

(UD) using a Brownian bridge movement model
(BBMM), where consecutive acoustic detections between
receivers by moving sharks are linked by conditional
random walks [29, 30]. The BBMM also incorporates
measurement error (we set this to 300 m as the average
receiver detection range) to provide a more realistic rep-
resentation of the possible space used by the animal

[30]. CPF behavior will consist of periodic excursions
from the central place, and we were interested in the
distances sharks moved throughout the diel period from
this core location. We calculated the central place for
each individual separately. For blacktip reef sharks, we
defined the central place as the 50% UD predicted by
the BBMM. However, grey reef sharks were detected on
far fewer receivers, making it difficult to calculate
2-dimensional BBMMs. As such, for each individual we
defined the core area as the receiver where 80% of detec-
tions were made, with a 1000 m buffer (assuming a de-
tection range of 500 m on either side of forereef
receivers). For both species of shark, we then quantified
the distance of movement from this core area through-
out the diel cycle. That is, for each individual we created
a time series of distances to its own central place and
then in the last step we averaged these distances into a
time series of average displacement for each shark spe-
cies. Analyses were performed in R using the adehabitat
LT and adehabitat HR packages.
To explore diel patterns of vertical habitat use by grey

reef sharks, we constructed generalized additive mixed
models (GAMMs) using hourly mean depth and body
temperature data from the acoustic transmitters. Specif-
ically, we estimated the effect of time of day on swim-
ming depth and temperature, with individual shark
modeled as a random effect. All other model compo-
nents were the same as described above for swim speed.
Diel changes in depth and temperature for blacktips
were reported in [14].

Patterns of space use and activity seascapes The ac-
celeration data and HMMs provided probabilities of
sharks being in a relatively high active state throughout
the diel cycle. We then combined these with
three-dimensional UDs calculated over months to years
of movement from the telemetry data, to generate an
overall visual representation of the ‘activity seascape’ of
individual animals within their environment. We used
the telemetry data to produce space-time cubes (STC)
where the bottom two dimensions represent the geo-
graphic space over which the movement occurs and the
third dimension is time [29]. In a 2D kernel density UD,
the surface representing this density is divided into
square grid cells or pixels, the value of which represents
the probability of movement in that particular location.
Analogously, in a 3D UD, the space-time volume is di-
vided into so-called voxels, i.e. three-dimensional grid
cubes, with each voxel assigned a probability of move-
ment in that particular location in space and time. Our
three-dimensional BBMM generalizations allow us to
use time as part of the BBMM calculation, and show
time visually on the third axis of the space-time density
volume [29]. We built 3D UDs for each shark by
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aggregating telemetry data by day. The space-time UDs
were then combined with the diel activity probabilities
from HMMs in order to visually emphasize areas in the
space-time UDs when sharks were the most active. We
did this by multiplying each voxel in the space-time UD
volume with the probability at that particular moment in
time of the shark being in an active state, as determined
by the HMMs. We removed any individuals from ana-
lysis that had < 100 detections. The activity seascape al-
gorithm is in the process of being published as R
package. In the mean time, a preliminary version of the
R code will be placed to https://github.com/udemsar
upon publication.

Bioenergetic model
To predict the relative contribution of swimming speed
and body temperature on daily energy budgets, we built
a simple bioenergetics model for grey reef sharks. We
calculated shark mass using W = 0.0045 L3.21 where L is
total length in cm and W is weight in kg (http://fishba-
se.org). Routine metabolic rates (M) were then estimated
using the equation for ectothermic sharks, Log10M =
0.79*Log10W + 2.31 [31]. Metabolic rates were corrected
for changes in body temperature assuming a Q10 of 1.65
and 3.0, to include the range of Q10 values seen within
tropical sharks [32, 33]. To predict the effect of changing
swim speed, we used the model developed for requiem
sharks in [34]. Briefly, we assume that the average swim-
ming speed for each animal represents its optimal travel
speed that minimizes its cost of transport. The percent-
age increase or decrease in swim speeds from this aver-
age leads to an equivalent change in metabolic rate (e.g.
1% increase in speed = 1% increase in active metabolic
rate [31]). We calculated hourly changes in routine

metabolic rate for a 38.3 kg (average grey reef shark
body mass at Palmyra) individual using the observed diel
changes in body temperature, and then assuming the
animal maintained constant body temperature through-
out the diel cycle (average 28.0 °C). Diel changes in swim
speed were inferred from the GAM results from the
swim speed sensor data, described above. Model results
were compared with a paired 2 sample t-test. Our goal
was not to estimate daily energy costs, but rather to de-
termine if observed diel changes in body temperature
were biologically relevant (at least regarding energy
costs) and the relative contribution of shark swim speed
to the daily energy budget.

Results
Patterns of activity
We recovered behavioral information from data-loggers
deployed on four blacktip reef sharks (120 ± 6 cm Total
Length (TL), all female, 16 days) and four grey reef
sharks (155 ± 5 cm TL, all females, 15 days, Table 1).
Hidden Markov models were constructed considering
two behavioral states; state 1 (‘relatively low activity’)
was associated with fairly constant relatively low levels
of ODBA, while state 2 (‘relatively high activity’) in-
volved overall higher activity levels and in particular in-
cluded any bursts in ODBA (Fig. 1). The HMMs
identified clear diel patterns in activity for both species,
although the patterns and magnitude of the differences
varied (Fig. 2). Blacktip reef sharks showed higher overall
probabilities of being in state 2 at night with a clear peak
between 20:00–21:00 and lowest activity in the early
afternoon (12:00–15:00). Probability of high activity dur-
ing the day was as low as 15% and increased to an early
evening probability of 40%, depending on tide (Fig. 2a).
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Fig. 1 State dependent conditional densities of Overall Dynamic Body Acceleration (ODBA) values for blacktip reef sharks (BTA-D) and grey reef
sharks (GRA-D). Sharks were fitted with accelerometers for periods of 3–5 days. State 1 is a low activity state, while state 2 is a high activity state.
The y-axis is the density of the estimated state-dependent probability density functions, weighted by the proportion of observations that
correspond to each state. The marginal density is the sum of the weighted-state dependent densities
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Grey reef sharks showed the highest probability of activ-
ity (state 2) from approximately 21:00–06:00, with a
peak at 03:00 (Fig. 2b). Lowest levels of activity occurred
between 11:00–12:00. However, the probability of grey reef
sharks being in a high activity state was only 17% at night
(during high or low tide), with a minimum 12% probability
in the late morning (during the ebb tide) (Fig. 2b). Overall,
sharks were in the low activity state (state 1) for the major-
ity of their time (blacktip reef sharks 77.7% range 71.8–
83.6%, grey reef sharks 86.1% range 76.3–96.7%). Blacktip
reef sharks remained in state 2 for 19–26 s (means), while
grey reef sharks were in state 2 for 10–29 s bursts.
HMMs also revealed significant variation in behaviour

with depth (Fig. 3). Blacktips used relatively shallow
depths with the majority of time spent < 10 m, although
two individuals made brief single dives to 30 m (Fig. 3,
Additional file 3: Appendix S3). During deeper dives,
sharks were in an active state (state 2) but overall, individ-
uals were most active at depths of 4–10 m, or at the sur-
face if temperatures were 28 °C. All sharks were in a low
activity state (state 1) when they were at the surface in wa-
ters > 29.5 °C (Fig. 3). The depth distribution for grey reef
sharks was variable, with animals primarily using depths
in the 30–80 m range, but occasionally diving as deep as
120 m, although one individual rarely went shallower than
80 m (see Additional file 3: Appendix S3). Sharks showed
a bimodal pattern in the probability of being in state 2,

spending a high percentage of time active when in shallow
water but also when performing brief deep dives below
the thermocline, which was located at approximately
100 m (Fig. 3).
We obtained 22 h of video footage from two grey reef

sharks, which revealed that both sharks used forereef hab-
itats during the day although shark D was offshore (pela-
gic) during the early morning hours (Fig. 4). Foraging
attempts were defined by the shark accelerating towards
the reef followed by lateral snapping of the head and reef
fishes in proximity displaying anti-predator maneuvers.
Two foraging attempts, one of which was successful (sink-
ing scales were seen after the attempt, Additional file 4:
Appendix S4), were observed by shark D, while seven at-
tempts were observed for shark B. The HMM predicted
individuals to be in state 2 for all foraging attempts. Other
grey reef sharks (and sometimes whitetip reef sharks,
Triaenodon obesus) were frequently seen in the footage,
with > 10 individuals in frame at multiple points in time
(Fig. 4). With one exception, if sharks were in state 2 while
other sharks were seen, then the other individuals were
also highly active (i.e. multiple individuals were being ac-
tive) and in some cases appeared to be foraging (Add-
itional file 5: Appendix S5). Shark D was frequently seen
associating with schools of great barracuda (Sphyraena
barracuda). On three occasions, yellowfin tuna (Thunnus
albacares) were observed foraging on the reef near shark

Fig. 2 Diel and tidal changes in the probability of blacktip reef (a) and grey reef sharks (b) being in a relatively high activity state (state 2). Probabilities
were calculated by applying a hidden Markov model to acceleration data. The solid grey lines represent 95% confidence intervals for one tidal state
(high tide). For clarity, other tidal confidence intervals have not been included
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Fig. 3 Vertical behavior of female reef sharks at Palmyra atoll. Swimming depth and water temperature has been colour coded based on the
percentage of time sharks were in a high activity state (state 2). Behavioral state was predicted by hidden Markov model from acceleration data.
Red designates a high proportion of time spent in state 2 at that depth/temperature

Fig. 4 A day in the life of grey reef shark B (upper) and D (lower) as determined by multi-sensor data-loggers. Depth has been color coded to indicate
the behavioral state; low activity (state 1) or high activity (state 2), using acceleration data and HMMs. Video cameras were used to observe behaviors.
Horizontal black dashes indicate foraging attempts or success. Vertical black bars indicate when the sharks associated with con-specifics. In upper panel,
horizontal blue lines indicate when yellowfin tuna were seen foraging on reef. Horizontal blue lines on lower panel highlight when the shark was
associating with schooling barracuda. Note the high abundance of fishes on the mesophotic reef (70 m) in shark B
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B (Fig. 4). Shark B used mesophotic reefs (> 50 m) with
very high reef fish abundance, including schooling plank-
tivorous species.
Grey reef sharks (154–159 cm TL) swam at average

speeds of 0.51–0.63 m/s with maximum speeds of
3.6 m/s. Although the average speeds differed between
the three individuals, they all showed the same diel pat-
tern with increased speeds at 02:00–03:00 and lowest
speeds from 12:00–18:00 (Additional file 6: Appendix
S6). Average swim speeds increased by 5–10% during
the night (GAM AIC values = − 13,561.7.27 (A), −
10,896.4 (C), − 27,936.8 (D) compared to null models
AIC values = − 8423.6 (A), − 7730.9 (C), − 16,824.0 (D),
Additional file 5: Appendix S5).

Patterns of space use and activity seascapes
We acoustically tagged 20 female blacktip reef sharks (119
± 7 cm TL) on the backreefs at Palmyra. Sharks were de-
tected for an average of 392 ± 341 days (range 22–1108), al-
though individuals detected for short durations were tagged
with transmitters with shorter battery lives (e.g. acceleration
transmitters). The majority of individuals (70%) showed evi-
dence of limited diel movement patterns, using a core area
during the day and moving over an expanded activity space
at night (Figs. 5a and 6). However, the remaining 30% of in-
dividuals appeared to use the same areas day and night.

Blacktip reef sharks had activity spaces of 1.9 ± 2.7 km2 and
had diel displacements from the core area of 0.73 ±
0.63 km. We acoustically tagged and detected 43 grey reef
sharks (30 F: 13 M, 143 ± 17 cm TL) for an average of
1012 ± 429 days (range 5–1545 d) on the Palmyra forereefs.
92.5% of individuals showed diel movement patterns, being
detected on the forereefs during the day with far fewer de-
tections at night, although we also captured the night time
habitat use of some individuals (Figs. 5c, d and 7). Grey reef
sharks had activity spaces of 4.4 ± 1.3 km2 and showed daily
displacement of 2.9 ± 1.3 km. We note that activity space
and displacement estimates are only representative of reef
shark movements within the receiver array and are there-
fore likely underestimates of both. For both species, sharks
showed excursions from the central place that increased in
distance between sunset and sunrise, although there were
far fewer detections at night (Fig. 5). The nighttime excur-
sions were far more pronounced in grey reef sharks than
blacktip reef sharks, which only showed extended move-
ments during the early evening when they were also pre-
dicted to be most active (Fig. 5). Acoustic noise is also
louder at night (e.g. snapping shrimp), which will likely re-
duce the number of acoustic detections as well (K. Weng
unpublished data).
Shark vertical habitat use appeared to vary relative to

the diel cycle and the area of core use. Our previous

Fig. 5 Diel changes in average displacement from the central place by blacktip reef (a, n = 20) and grey reef sharks (c, n = 20). Grey and light
green backgrounds show night and day respectively. Probabilities of sharks being in state 2 (high activity) are shown as dark green lines (redrawn
from Fig. 2). There were diel differences in number of detections (b, d) so daytime estimates of distance are based on larger sample sizes. Blacktip
reef shark nocturnal displacements averaged 1 km, while grey reef sharks averaged 3 km from the central place
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Fig. 6 (See legend on next page.)
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(See figure on previous page.)
Fig. 6 Activity seascapes for blacktip reef sharks at Palmyra atoll. a The volume of probability of diel activity determined from accelerometers
(see Fig. 2) shown in a space-time cube, where each voxel gets the value of respective probability based on the time in the voxel. Darker/lighter
green voxels in the probability volume correspond to higher/lower probability values in the chart. b Space-time density volume for blacktip reef
sharks (n = 17). The bottom panel shows the projection of the volume onto the two geographic dimensions, i.e. the map of Palmyra atoll. Note
that this is a view from above the 3D UD volume and not a 2D UD surface. c Activity seascape for blacktip reef sharks (n = 17), where voxel
values are obtained as a voxel-by-voxel product of volumes in a) and b). The bottom panel shows the projection of the volume onto the map of
Palmyra atoll. d Space-time density for an individual blacktip reef shark (duration = 1108 days) and e) activity seascape for the same blacktip reef
shark. Note the similarity of the individual patterns with the respective patterns of the whole group in panels b) and c). Voxel size in all
volumetric representations is 100 m × 100 m × 10 min, creating a Space-Time volume of 202 × 56 × 144 voxels (20.2 km × 5.6 km × 24 h)

Fig. 7 Activity seascapes for grey reef sharks at Palmyra atoll. a The volume of probability of diel activity determined from accelerometers shown in a
space-time cube, where each voxel gets the value of respective probability based on the time in the voxel. Darker/lighter green voxels in the
probability volume correspond to higher/lower probability values in the chart. b Space-time density volume for grey reef sharks (n = 17). The bottom
panel shows the projection of the volume onto the two geographic dimensions, i.e. the map of Palmyra atoll. Note that this is a view from above the
3D UD volume and not a 2D UD surface. c Activity seascape for grey reef sharks (n = 17). The bottom panel shows the projection of the volume onto
the map of Palmyra atoll. Voxel size in all volumetric representations is 100 m× 100 m× 10 min, creating a Space-Time volume of 202 × 56 × 144
voxels (20.2 km× 5.6 km× 24 h)
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analysis of blacktip reef shark vertical movements and
body temperature (from acoustic telemetry data), re-
vealed very moderate diel changes, with these sharks
using water 2–3 m deeper during the day [14]. Grey reef
sharks displayed more dramatic diel shifts in swimming
depths, using deeper depths during the day (average
53 m) than at night (average 23 m, GAMM, AIC value =
193,034.1, null model AIC value = 206,293.0, Additional
file 7: Appendix S7). Body temperatures in grey reef
sharks also varied with the diel period, with lower body
temperatures during the day (average 27.8 °C) when the
sharks were deeper, than at night (average 28.1 °C,
GAMM, AIC value = 11,059.5, null model AIC value
=15,518.0, Additional file 7: Appendix S7), although
there was more variability between individuals compared
to diving patterns.
Due to our limited sample size of data-logger equipped

sharks, and to ensure that shark movement data (from
telemetry) at least overlapped temporally with the period
of data-logger deployment, we only generated activity
seascapes for blacktip reef sharks tagged in the backreef
and grey reef sharks tagged along the SW portion of the
atoll (locations where data-logger equipped sharks were
caught and released). As such, activity seascape data
consists of 17 blacktip reef sharks tagged on the back-
reefs and 17 grey reef sharks tagged within and just out-
side the channel (Additional file 1: Appendix S1).
Activity seascapes for both species showed a high con-
centration of space use/activity in the daytime central
place, with activity becoming spatially more diffuse at
night (Figs. 6 and 7). For both species, multiple individ-
uals used the same daytime core area, suggestive of ref-
uging behavior (Figs. 6 and 7). As changes in diel activity
were more pronounced in blacktip reef sharks, activity
seascapes showed greater variation from simple space
use UDs. The importance of daytime activity was greatly
reduced within the central place, while the early evening
use of the main channel was highlighted as a location
where activity of blacktip reef sharks may be high
(Fig. 6).

Bioenergetic model
There were clear diel changes in estimated routine meta-
bolic rates due to the nocturnal increase in swim speed
(Fig. 8). Overall, there was an approximately 7% differ-
ence in routine metabolic rate between the early morn-
ing (02:00–3:00) and the early afternoon (12:00–15:00).
However, there was very little difference in predicted en-
ergy expenditure between an animal with a 0.5 °C diel
change in body temperature, and one maintaining a con-
stant body temperature throughout the diel cycle, re-
gardless of the Q10 (paired t-test for means, Q10 = 1.6 t
= 0.09, p = 0.93, Q10 = 3.0 t = − 0.00067, p = 0.99).

Discussion
As predicted, both species of shark used a smaller cen-
tral place in deeper water during the day when they were
less active, before expanding movements into shallow
water at night with a concurrent increase in activity.
Blacktip reef sharks showed more dramatic diel changes
in activity (but much more subtle changes in swimming
depth) and were most active during the early evening,
while grey reef sharks tended to be most active in the
middle of the night. The early evening peak in activity
seen in blacktip reef sharks was previously suggested to
be a function of increased foraging success (due to fall-
ing or low light levels) and predator/prey thermal physi-
ology [14]. Aspects of CPF behavior clearly vary between
the species, as blacktip reef sharks use the central place
day and night; they just expand the total area they use at
night. Grey reef sharks were rarely detected at their cen-
tral place at night so were not reusing the same area
throughout the diel cycle. Furthermore, there is strong
spatial separation between the species at Palmyra, with
blacktip reef shark activity spaces located in the back-
reef, lagoons, and shallow forereef, while grey reefs are
situated on the deeper sections of the forereefs [35]. Ac-
tivity cycles are based on small samples sizes, although
there is evidence that diel activity rhythms in tropical
reef sharks fit a more general pattern [23, 36]. For ex-
ample, an acoustic camera placed in the main channel at
Palmyra documented a peak in number of sharks (as-
sumed to be blacktip reef sharks based on nighttime
fishing) seen at the exact time and place we predict max-
imal blacktip reef shark activity (early evening in the
channel [37]).
Changes in activity were concurrent with diel vertical mi-

grations to and from the central place. Blacktip reef sharks

Fig. 8 Predicted diel changes in routine metabolic rates for a 38.3 kg
grey reef shark, based on body temperature and swim speed. ‘Observed’
uses actual diel changes in body temperature, while ‘static’ assumes a
constant body temperature of 28 °C throughout the diel cycle

Papastamatiou et al. Movement Ecology  (2018) 6:9 Page 11 of 15



perform small shifts in swimming depth, but tides played a
greater role in swimming depth, with individuals moving
close to the surface during daytime low tide periods,
where they are directly warmed by the sun [14, 38,
39]. Grey reef sharks maintained cooler body temper-
atures during the day by occasionally diving below
the thermocline and showed a greater diel shift in
depth. However, their diel variation in body
temperature was small and dives below the thermo-
cline during the day were short and tended to occur
while they were in a high activity state. Due to ther-
mal inertia effects, grey reef sharks would have
warmer muscle temperatures than mesophotic teleost
prey residing below the thermocline, as long as dive
durations are short. The increased muscle perform-
ance from being warmer could provide sharks with a
hunting advantage during these periodic deeper ex-
cursions. Although behavior below the thermocline
was consistent between individual grey reef sharks,
there was also clearly some variability in the depths
selected by individuals, with one shark staying consid-
erably deeper than the others. The reasons for this
variability are unknown, but could reduce
intra-specific competition which is also thought to
drive horizontal separation between grey reef shark
groups at Palmyra [35].
Activity seascapes and video footage suggest that some

foraging may occur in the central place of grey reef
sharks at Palmyra. If foraging has some significance to
CPF behavior in grey reef sharks, then we would expect
the location of the central place to be in an area of high
diurnal prey biomass. We recently conducted a
mark-recapture study to determine spatially dependent
densities for grey reef sharks at Palmyra [24]. All fishing
was performed during the day so technically these distri-
bution patterns represent daytime central place loca-
tions. We also used diver surveys to estimate spatial
patterns of biomass for reef fishes of lengths 10–60 cm,
as a proxy of potential prey distribution ([40], NOAA
Coral Reef Ecosystem Program, Additional file 8: Appen-
dix S8). Qualitatively, there was broad overlap between
shark density hotspots and prey biomass, with highest
levels of both metrics at the eastern and western tips
and lower values along the southern and northern por-
tions of the atoll (Additional file 8: Appendix S8). While
abiotic conditions may explain these patterns (e.g. areas
of high current flow), we at least provide evidence that
grey reef shark central place locations are in areas where
prey is most abundant. Similarly, seabirds establish cen-
tral place locations dependent on local productivity and
prey availability, although of course seabird prey are not
located directly at the central place [41].
Although our results match our general predictions,

our bioenergetics model for grey reef sharks suggests

that body temperatures are having an insignificant effect
on routine metabolic rates, at least at the diel scale. In-
stead, diel changes in routine metabolic rates are driven
by changes in swim speed. Similarly, activity made a
much larger contribution to the short-term field meta-
bolic rates of sea snakes than changes in temperature
[21]. These results suggest that CPF behavior of grey reef
sharks may involve some different mechanisms than
those seen in other animals, at least for the Palmyra
population (i.e. individuals at other locations may display
more dramatic diel changes in body temperatures).
Firstly, we cannot assume that foraging does not take
place within the central place, which can have implica-
tions for patterns of intra-specific competition in refug-
ing animals. Secondly, energy costs will not be a
function of travel distance to the central place, but in-
stead related to movement speeds and likely tortuosity
[18]. Unlike seabirds and other colonial CPF, access to
foraging patches by sharks should not be a function of
distance to the patch as they still have to swim within
the central place; sharks simply modulate speed [3]. This
would also call into question a key prediction of trad-
itional CPF models; in reef sharks foraging time within a
patch should be independent of patch to central place
distance, in species that never stop swimming [4]. Of
course, this assumes the only currency of value to the
sharks is energy, when time itself may also be important,
especially if coral reefs are heterogeneous with regards
habitat quality. In this case, the time taken to swim to
distant patches may come at lost opportunities of for-
aging at more reliable patches close to the central place.
Why would sharks, which do not use a nest/shelter or

stop swimming, need a central place? CPF would require
some degree of memory although the animal may only
have to use basic path integration and memorization of
simple landmarks to return to a central place, which
should optimize foraging rates [42, 43]. Therefore, CPF
behavior may optimize foraging success via improved
navigation to foraging areas, while minimizing memory
requirements (which come with costs) when prey commu-
nities are relatively abundant [42, 43]. CPF behavior may
also foster social associations between reef sharks, as
‘meeting’ would require a common daytime habitat. We
found that multiple individuals used the same core day-
time areas, and video footage showed large numbers of
conspecifics sharing the same areas and at times even for-
aging simultaneously. It is becoming increasingly apparent
that some species of shark, including grey and blacktip
reef sharks, are capable of forming social associations with
conspecifics, and ‘refuging’ during the day may be a mech-
anism to allow such associations to form [6, 15, 44, 45].
Ideally, one would record spatial position and high

resolution activity from each individual simultaneously,
and over long time periods, improving our ability to
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identify ‘activity hotspots’ [19]. Doing so with fishes will
require technological advancements to existing satellite
or acoustic telemetry techniques or the development of
completely new technologies [20, 21]. While cyclical pat-
terns of activity are likely reasonably consistent in CPF
animals that show high residency, this may change
throughout the year and requires testing. For example, a
semi-captive study with lemon sharks suggested that the
extent of diel activity differences could be a function of
sex and social position [15]. New logging technologies
may also enable feeding events and meal size to be dir-
ectly measured in free-ranging sharks, rather than in-
ferred from acceleration signals [46]. Analytically, state
space models and HMMs can now incorporate multiple
variables simultaneously from individual animals (e.g.
diving depth, acceleration, stomach temperature, turn
angles) to infer and validate behavioral states and pro-
duce population-level activity budgets [47, 48]. Future
studies could also then address individual variability in
behavior rather than homogenizing it within population
scale analyses.
Understanding the small-scale dynamics of predation

requires approaching behavior from a spatial and tem-
poral context in concert. When considering predator ef-
fects on prey, we must consider patterns of predator
habitat selection, but also predator behavior within those
habitats. A recent study suggested that even trophic cas-
cades in marine systems may be confined to spatial ‘hot-
spots’ used by predators (e.g. [39]). Our activity seascape
approach simultaneously displays the space used and diel
activity of marine predators and could further identify lo-
cations of ecological importance, taking into account
space use and behaviour. These advancements could sig-
nificantly improve our understanding of how marine pred-
ators may influence lower trophic levels and further
explain the evolution of CPF behavior in marine animals.

Conclusions
We develop a new method for simultaneously displaying
diel space use and activity, in marine animals where
space use and behavior are often measured over different
time scales. We use this method to show that reef sharks
behave similar to central place foragers, occupying
deeper water during the day where they are less active,
and being more active in shallower water at night. How-
ever, unlike other CPF animals, grey reef sharks at least,
showed some evidence of foraging in the central place.
Furthermore, diel changes in energy expenditure appear
to be regulated by changes in swim speed and not body
temperature. The implications are that traditional
predictions from CPF theory regarding patch foraging
times, may not apply for CPF animals that never stop
swimming.
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