529 research outputs found

    Approximate Waveforms for Extreme-Mass-Ratio Inspirals in Modified Gravity Spacetimes

    Full text link
    Extreme-mass-ratio inspirals, in which a stellar-mass compact object spirals into a supermassive black hole, are prime candidates for detection with space-borne milliHertz gravitational wave detectors, similar to the Laser Interferometer Space Antenna. The gravitational waves generated during such inspirals encode information about the background in which the small object is moving, providing a tracer of the spacetime geometry and a probe of strong-field physics. In this paper, we construct approximate, "analytic-kludge" waveforms for such inspirals with parameterized post-Einsteinian corrections that allow for generic, model-independent deformations of the supermassive black hole background away from the Kerr metric. These approximate waveforms include all of the qualitative features of true waveforms for generic inspirals, including orbital eccentricity and relativistic precession. The deformations of the Kerr metric are modeled using a recently proposed, modified gravity bumpy metric, which parametrically deforms the Kerr spacetime while ensuring that three approximate constants of the motion remain for geodesic orbits: a conserved energy, azimuthal angular momentum and Carter constant. The deformations represent modified gravity effects and have been analytically mapped to several modified gravity black hole solutions in four dimensions. In the analytic kludge waveforms, the conservative motion is modeled by a post-Newtonian expansion of the geodesic equations in the deformed spacetimes, which in turn induce modifications to the radiation-reaction force. These analytic-kludge waveforms serve as a first step toward complete and model-independent tests of General Relativity with extreme mass-ratio inspirals.Comment: v1: 28 pages, no figures; v2: minor changes for consistency with accepted version, 2 figures added showing sample waveforms; accepted by Phys. Rev.

    Immune evasion of the CD1d/NKT cell axis

    Get PDF
    Many reviews on the CD1d/NKT cell axis focus on the ability of CD1d-restricted NKT cells to serve as effector cells in a variety of disorders, be they infectious diseases, cancer or autoimmunity. In contrast, here, we discuss the ways that viruses, bacteria and tumor cells can evade the CD1d/NKT cell axis. As a result, these disease states have a better chance to establish a foothold and potentially cause problems for the subsequent adaptive immune response, as the host tries to rid itself of infections or tumors

    Constraining alternative theories of gravity using pulsar timing arrays

    Get PDF
    The opening of the gravitational wave window by ground-based laser interferometers has made possible many new tests of gravity, including the first constraints on polarization. It is hoped that within the next decade pulsar timing will extend the window by making the first detections in the nano-Hertz frequency regime. Pulsar timing offers several advantages over ground-based interferometers for constraining the polarization of gravitational waves due to the many projections of the polarization pattern provided by the different lines of sight to the pulsars, and the enhanced response to longitudinal polarizations. Here we show that existing results from pulsar timing arrays can be used to place stringent limits on the energy density of longitudinal stochastic gravitational waves. Paradoxically however, we find that longitudinal modes will be very difficult to detect due to the large variance in the pulsar-pulsar correlation patterns for these modes. Existing upper limits on the power spectrum of pulsar timing residuals imply that the amplitude of vector longitudinal and scalar longitudinal modes at frequencies of 1/year are constrained: AVL<4.1×10−16{\cal A}_{\rm VL} < 4.1\times 10^{-16} and ASL<3.7×10−17{\cal A}_{\rm SL} < 3.7\times 10^{-17}, while the bounds on the energy density for a scale invariant cosmological background are: ΩVLh2<3.5×10−11\Omega_{\rm VL}h^2 < 3.5 \times 10^{-11} and ΩSLh2<3.2×10−13\Omega_{\rm SL}h^2 < 3.2 \times 10^{-13}.Comment: 5 pages, 4 figure

    Improved gravitational-wave constraints on higher-order curvature theories of gravity

    Get PDF
    Gravitational wave observations of compact binaries allow us to test general relativity (and modifications thereof) in the strong and highly-dynamical field regime of gravity. Here we confront two extensions to general relativity, dynamical Chern-Simons and Einstein-dilaton-Gauss-Bonnet theories, against the gravitational wave sources from the GWTC-1 and GWTC-2 catalogs by the LIGO-Virgo Collaboration. By stacking the posterior of individual events, we strengthen the constraint on the square root of the coupling parameter in Einstein-dilaton-Gauss-Bonnet gravity to αEdGB<1.7\sqrt{\alpha_{\rm \tiny EdGB}} < 1.7 km, but we are unable to place meaningful constraints on dynamical Chern-Simons gravity. Importantly, we also show that our bounds are robust to (i) the choice of general-relativity base waveform model, upon which we add modifications, (ii) unknown higher post-Newtonian order terms in the modifications to general relativity, (iii) the small-coupling approximation, and (iv) uncertainties on the nature of the constituent compact objects

    Analysis of the Environmental Factors Affecting the Growth Traits of Iran-Black Sheep

    Full text link
    A study was conducted to evaluate the effects of non-genetic factors on the growth behavior of Iran-Black sheep. The data of growth performances, birth weight (BW), weaning weight (W3), weight at 6, 9and 12 months of age (W6, W9 and W12, respectively), were taken from 1522 lambs belonging to data bank from Abbas Abad Sheep Breeding Station located at the North-east of Iran during a period of five years. Statistical analyses were performed using a general linear model including non-genetic factors: lamb sex, birth year and litter size as main effects, the lamb's age when weighed as covariate, and the interactions between these factors. Results showed that all traits were significantly (

    Probing internal dissipative processes of neutron stars with gravitational waves during the inspiral of neutron star binaries

    Full text link
    We study the impact of out-of-equilibrium, dissipative effects on the dynamics of inspiraling neutron stars. We find that modeling dissipative processes (such as those from the stars internal effective fluid viscosity) requires that one introduce a new tidal deformability parameter--the dissipative tidal deformability--which modifies the phase of gravitational waves emitted during the inspiral phase of a neutron star binary. We show that the dissipative tidal deformability corrects the gravitational-wave phase at 4 post-Newtonian order for quasi-circular binaries. This correction receives a large finite-size enhancement by the stellar compactness, analogous to the case of the tidal deformability. Moreover, the correction is not degenerate with the time of coalescence, which also enters at 4PN order, because it contains a logarithmic frequency-dependent contribution. Using a simple Fisher analysis, we show that physically allowed values for the dissipative tidal deformability may be constrained by measurements of the phase of emitted gravitational waves to roughly the same extent as the (electric-type, quadrupolar) tidal deformability. Finally, we show that there are no out-of-equilibrium, dissipative corrections to the tidal deformability itself. We conclude that there are at least two relevant tidal deformability parameters that can be constrained with gravitational-wave phase measurements during the late inspiral of a neutron star binary: one which characterizes the adiabatic tidal response of the star, and another which characterizes the leading-order out-of-equilibrium, dissipative tidal response. These findings open a window to probe dissipative processes in the interior of neutron stars with gravitational waves.Comment: 24 pages, 1 figur

    How Do Axisymmetric Black Holes Grow Monopole and Dipole Hair?

    Full text link
    We study the dynamical formation of scalar monopole and dipole hair in scalar Gauss-Bonnet theory and dynamical Chern-Simons theory. We prove that the spherically-symmetric mode of the dipole hair is completely determined by the product of the mass of the spacetime and the value of the monopole hair. We then show that the dynamics of the â„“=1\ell=1 mode of the dipole hair is intimately tied to the appearance of the event horizon during axisymmetric collapse, which results in the radiation of certain modes that could have been divergent in the future of the collapse. We confirm these analytical predictions by simulating the gravitational collapse of a rapidly rotating neutron star in the decoupling limit, both in scalar Gauss-Bonnet and dynamical Chern-Simons theory. Our results, combined with those of Ref.~\cite{R:2022cwe}, provide a clear physical picture of the dynamics of scalar monopole and dipole radiation in axisymmetric and spherical gravitational collapse in these theories.Comment: v2-matches published version in PR

    Metric of a tidally perturbed spinning black hole

    Full text link
    We explicitly construct the metric of a Kerr black hole that is tidally perturbed by the external universe in the slow-motion approximation. This approximation assumes that the external universe changes slowly relative to the rotation rate of the hole, thus allowing the parameterization of the Newman-Penrose scalar ψ0\psi_0 by time-dependent electric and magnetic tidal tensors. This approximation, however, does not constrain how big the spin of the background hole can be and, in principle, the perturbed metric can model rapidly spinning holes. We first generate a potential by acting with a differential operator on ψ0\psi_0. From this potential we arrive at the metric perturbation by use of the Chrzanowski procedure in the ingoing radiation gauge. We provide explicit analytic formulae for this metric perturbation in spherical Kerr-Schild coordinates, where the perturbation is finite at the horizon. This perturbation is parametrized by the mass and Kerr spin parameter of the background hole together with the electric and magnetic tidal tensors that describe the time evolution of the perturbation produced by the external universe. In order to take the metric accurate far away from the hole, these tidal tensors should be determined by asymptotically matching this metric to another one valid far from the hole. The tidally perturbed metric constructed here could be useful in initial data constructions to describe the metric near the horizons of a binary system of spinning holes. This perturbed metric could also be used to construct waveforms and study the absorption of mass and angular momentum by a Kerr black hole when external processes generate gravitational radiation.Comment: 17 pages, 3 figures. Final PRD version, minor typos, etc corrected. v3: corrected typo in Eq. (35) and (57

    Spin-induced scalarized black holes

    Get PDF
    It was recently shown that a scalar field suitably coupled to the Gauss-Bonnet invariant G\mathcal{G} can undergo a spin-induced linear tachyonic instability near a Kerr black hole. This instability appears only once the dimensionless spin jj is sufficiently large, that is, j≳0.5j \gtrsim 0.5. A tachyonic instability is the hallmark of spontaneous scalarization. Focusing, for illustrative purposes, on a class of theories that do exhibit this instability, we show that stationary, rotating black hole solutions do indeed have scalar hair once the spin-induced instability threshold is exceeded, while black holes that lie below the threshold are described by the Kerr solution. Our results provide strong support for spin-induced black hole scalarization.publishe

    Observable Signatures of EMRI Black Hole Binaries Embedded in Thin Accretion Disks

    Get PDF
    We examine the electromagnetic (EM) and gravitational wave (GW) signatures of stellar-mass compact objects (COs) spiraling into a supermassive black hole (extreme mass-ratio inspirals or EMRIs), embedded in a thin, radiation-pressure dominated, accretion disk. At large separations, the tidal effect of the secondary CO clears a gap. We show that the gap refills during the late GW-driven phase of the inspiral, leading to a sudden EM brightening of the source. The accretion disk leaves an imprint on the GW through its angular momentum exchange with the binary, the mass increase of the binary members due to accretion, and its gravity. We compute the disk-modified GWs both in an analytical Newtonian approximation and in a numerical effective-one-body approach. We find that disk-induced migration provides the dominant perturbation to the inspiral, with weaker effects from the mass accretion onto the CO and hydrodynamic drag. Depending on whether a gap is present, the perturbation of the GW phase is between 10 and 1000 radians per year, detectable with the future Laser Interferometer Space Antenna (LISA) at high significance. The Fourier transform of the disk-modified GW in the stationary phase approximation is sensitive to disk parameters with a frequency trend different from post-Newtonian vacuum corrections. Our results suggest that observations of EMRIs may place new sensitive constraints on the physics of accretion disks.Comment: 42 pages, 8 figures, 3 tables, submitted to Phys. Rev.
    • …
    corecore