161 research outputs found

    Integrated effects of thermal acclimation and challenge temperature on cellular immunity in the plusiine moth larvae Chrysodeixis eriosoma (Lepidoptera: Noctuidae)

    Get PDF
    Temperature is one of the most influential factors for animals. The acclimation (rearing) and challenge temperatures are often more important than the given temperature per se. These effects on physiological responses have been known, but not well understood on immune responses. Here, we investigated the integrated effects of rearing and challenge temperatures on haemocyte populations in larvae of a plusiine moth, Chrysodeixis eriosoma. We hypothesize that the haemocyte concentration is decreased (increased) at higher (lower) temperatures from rearing temperatures and that the proportions of haemocyte types exhibit directional changes at higher (lower) temperatures to compensate for immune reactions. We expect that increasing (decreasing) the challenge temperature from the rearing temperature enhances (reduces) phagocytic activity. We found that higher temperatures slightly decreased the haemocyte concentration. We detected small changes in the proportions of haemocyte types among rearing temperatures, but the changes were non‐directional and most of them were statistically insignificant. We also found the integrated effects only with increases in the challenge temperatures, which resulted in increased phagocytosis, whereas no apparent reactions were detected with decreases in the challenge temperatures. Our results show that the haemocyte concentration is significantly affected by the rearing temperature, which implies that haematopoiesis depends on the ambient temperature.We discuss some adaptive and non‐adaptive components for the positive integrated effects of increases in the challenge temperatures. We also discussed the obtained non‐responsiveness in the integrated effects with decreases in the challenge temperatures

    The Fundamental Planes of E+A galaxies and GALEX UV-excess early-type galaxies: Revealing their intimate connection

    Full text link
    Strong Balmer absorption lines and the lack of Ha and [OII] emission lines signify that E+As are post-starburst systems. Recent studies suggest that E+As may undergo the transition from the `blue cloud' to the `red sequence' and eventually migrate to red sequence ETGs. An observational validation of this scenario is to identify the intervening galaxy population between E+As and the red-sequence. Motivated by recent findings with GALEX that a large fraction of ETGs exhibit UV-excess as a sign of RSF, we investigate the possible connection of the UV-excess galaxies to E+As. In particular, we examine the FP scaling relations of the largest sample of ~1,000 E+As selected from the SDSS and ~20,000 morphologically-selected SDSS ETGs with GALEX UV data. The FP parameters, combined with stellar population indicators, reveal a certain group of UV-excess ETGs that bridges between E+As and quiescent red galaxies. The newly identified galaxies are the post-starburst systems characterized by UV-excess but no Ha emission. This is a conceptual generalisation of "E+A", in that the Balmer absorption line in the "E+A" definition is replaced with UV-optical colours that are far more sensitive to RSF than the Balmer lines. We refer to these UV-excess galaxies as "E+a" galaxies, which stands for elliptical ("E") galaxies with a minority of A-type ("a") young stars. The species are either (1) galaxies that experienced starbursts weaker than those observed in E+As (1~10% of E+As, "mild E+As") or (2) the products of passively evolved E+As after quenching star formation quite a while ago (~1 Gyr, "old E+As"). We suggest that the latter type of E+a galaxies represents the most recent arrival to the red sequence in the final phase of the "E+A" to "red early-type" transition. (Abridged)Comment: 15 pages, 15 figures, Accepted for publication in MNRA

    The Entropy Function for the extremal Kerr-(anti-)de Sitter Black Holes

    Full text link
    Based on the entropy function formalism, we consider the extremal Kerr-(anti-)de Sitter black holes in 4-dimensions. Solving differential equations exactly, which are obtained by extremizing the entropy function, we find agreement of the result with Bekenstein-Hawking entropy. Concerning the higher derivative corrections, we extend the computation to the case with Gauss-Bonnet term.Comment: 24 pages, 4 figures, comments on Gauss-Bonnet coefficient added, references adde

    A second hit somatic (p.R905W) and a novel germline intron-mutation of TSC2 gene is found in intestinal lymphangioleiomyomatosis: a case report with literature review

    Get PDF
    Background Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by hamartomas in multiple organs associated with germline mutations in TSC1 and TSC2, including exonic, intronic, or mosaic mutations. Gastrointestinal (GI) tract Lymphangioleiomyomatosis (LAM) is an extremely rare manifestation of TSC, with few reported cases. Herein, we aimed to determine the driver mutation, pathogenesis, and relationship of germline and somatic mutations of LAM through whole-genome sequencing (WGS) of the tumor and blood samples and whole transcriptome sequencing (WTS) analysis. Case presentation A nine-year-old girl with a full-blown TSC presented with abdominal masses detected during a routine check-up. Resected intestinal masses were diagnosed as LAM by thorough pathological examination. Interestingly, the LAM presented a somatic TSC2 gene mutation in exon 24 (p.R905W, c.C2713T), and the patient had intron retention by a novel germline mutation in the intron region of TSC2 (chr16:2126489, C > G). Conclusion Our case suggests that intron retention by a single nucleotide intronic mutation of TSC2 is sufficient to develop severe manifestations of TSC, but the development of LAM requires an additional somatic oncogenic mutation of TSC2.This work was supported by IITP grant funded by the Korean government (MSIP) (No.2019-0567)

    A Case of Infantile Fungal Urinary Tract Infection

    Get PDF
    Urinary tract infection is common in the pediatric population. The most common causative agents are bacteria, among which Escherichia coli is the most frequent uropathogen. Although fungal urinary tract infection is rare in the healthy pediatric population, it is relatively common among hospitalized patients. Fungus may be isolated from the urine of immunocompromised patients or that of patients with indwelling catheters. The most common cause of funguria is Candida albicans. Although more than 50% of Candida isolates belong to non-albicans Candida , the prevalence of non-albicans candiduria is increasing. Herein, we report a case of community-acquired candiduria in a 4-month-old immunocompetent male infant who had bilateral vesicoureteral reflux and was administered antibiotic prophylaxis. He was diagnosed with urinary tract infection caused by Candida lusitaniae and was managed with fluconazole

    Integrated Genomic Analysis Implicates Haploinsufficiency of Multiple Chromosome 5q31.2 Genes in De Novo Myelodysplastic Syndromes Pathogenesis

    Get PDF
    Deletions spanning chromosome 5q31.2 are among the most common recurring cytogenetic abnormalities detectable in myelodysplastic syndromes (MDS). Prior genomic studies have suggested that haploinsufficiency of multiple 5q31.2 genes may contribute to MDS pathogenesis. However, this hypothesis has never been formally tested. Therefore, we designed this study to systematically and comprehensively evaluate all 28 chromosome 5q31.2 genes and directly test whether haploinsufficiency of a single 5q31.2 gene may result from a heterozygous nucleotide mutation or microdeletion. We selected paired tumor (bone marrow) and germline (skin) DNA samples from 46 de novo MDS patients (37 without a cytogenetic 5q31.2 deletion) and performed total exonic gene resequencing (479 amplicons) and array comparative genomic hybridization (CGH). We found no somatic nucleotide changes in the 46 MDS samples, and no cytogenetically silent 5q31.2 deletions in 20/20 samples analyzed by array CGH. Twelve novel single nucleotide polymorphisms were discovered. The mRNA levels of 7 genes in the commonly deleted interval were reduced by 50% in CD34+ cells from del(5q) MDS samples, and no gene showed complete loss of expression. Taken together, these data show that small deletions and/or point mutations in individual 5q31.2 genes are not common events in MDS, and implicate haploinsufficiency of multiple genes as the relevant genetic consequence of this common deletion

    Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow

    Get PDF
    Mesenchymal stem cells (MSCs) are defined as cells that undergo sustained in vitro growth and can give rise to multiple mesenchymal lineages. Because MSCs have only been isolated from tissue in culture, the equivalent cells have not been identified in vivo and little is known about their physiological roles or even their exact tissue location. In this study, we used phenotypic, morphological, and functional criteria to identify and prospectively isolate a subset of MSCs (PDGFRα+Sca-1+CD45−TER119−) from adult mouse bone marrow. Individual MSCs generated colonies at a high frequency and could differentiate into hematopoietic niche cells, osteoblasts, and adipocytes after in vivo transplantation. Naive MSCs resided in the perivascular region in a quiescent state. This study provides the useful method needed to identify MSCs as defined in vivo entities
    corecore