5 research outputs found

    Two Parallel Pathways Assign Opposing Odor Valences during Drosophila Memory Formation

    No full text
    Summary: During olfactory associative learning in Drosophila, odors activate specific subsets of intrinsic mushroom body (MB) neurons. Coincident exposure to either rewards or punishments is thought to activate extrinsic dopaminergic neurons, which modulate synaptic connections between odor-encoding MB neurons and MB output neurons to alter behaviors. However, here we identify two classes of intrinsic MB γ neurons based on cAMP response element (CRE)-dependent expression, γCRE-p and γCRE-n, which encode aversive and appetitive valences. γCRE-p and γCRE-n neurons act antagonistically to maintain neutral valences for neutral odors. Activation or inhibition of either cell type upsets this balance, toggling odor preferences to either positive or negative values. The mushroom body output neurons, MBON-γ5β′2a/β′2mp and MBON-γ2α′1, mediate the actions of γCRE-p and γCRE-n neurons. Our data indicate that MB neurons encode valence information, as well as odor information, and this information is integrated through a process involving MBONs to regulate learning and memory. : Aversive and appetitive olfactory memories in fruit flies are formed in third order olfactory neurons, the mushroom body Kenyon cells (KCs). Yamazaki et al. identify parallel pathways consisting of two subpopulations of KCs and their output neurons that encode aversive and appetitive valences. Keywords: Drosophila, olfactory memory, γCRE-p neurons, γCRE-n neurons, valences, mutual inhibition, MBON-γ5β′2a/β′2mp, MBON-γ2α′

    Discoidin Domain Receptor 1 Contributes to the Survival of Lung Fibroblast in Idiopathic Pulmonary Fibrosis

    No full text
    Idiopathic pulmonary fibrosis (IPF), characterized by fibroblast proliferation and accumulation of extracellular matrix, including collagen, is a chronic progressive disorder that results in lung remodeling and fibrosis. However, the cellular mechanisms that may make fibroblasts resistant to apoptosis have not been completely elucidated. Discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase whose ligand is collagen, is expressed in vivo and contributes in vitro to leukocyte differentiation and nuclear factor (NF)-κB activation, which may play an important role in fibroblast survival. In this study, we examined in vivo and in vitro DDR1 expression and its role in cell survival using fibroblasts obtained from IPF and non-IPF patients. Immunohistochemically, fibroblasts present in fibroblastic foci expressed endogenous DDR1. The DDR1 expression level was significantly higher in fibroblasts from IPF patients, and the predominant isoform was DDR1b. In IPF patients, DDR1 activation in fibroblasts inhibited Fas ligand-induced apoptosis and resulted in NF-κB nuclear translocation. Suppression of DDR1 expression in fibroblasts by siRNA abolished these effects, and an NF-κB inhibitor abrogated the anti-apoptotic effect of DDR1 activation. We propose that DDR1 contributes to fibroblast survival in the tissue microenvironment of IPF and that DDR1 up-regulation may occur in other fibroproliferative lung diseases as well
    corecore