65 research outputs found

    Indicators Measuring the Performance of Malaria Programs Supported by the Global Fund in Asia, Progress and the Way Forward

    Get PDF
    INTRODUCTION: In 2010, the Global Fund provided more than 75% of external international financing for malaria control. The Global Fund uses performance based funding in the grants it finances. This paper analyses the indicators used to measure the performance of Global Fund supported malaria grants in Asia. METHODS: Indicators used in the performance frameworks for all Global Fund supported malaria grants in Asia were retrieved from grant database and grouped into impact, outcome, output and input categories and categorized by service delivery areas. Indicators of each group were compared over rounds. Indicators used in performance frameworks were compared with internationally adopted indicators included in the Monitoring and Evaluation Toolkit developed by the Global Fund and international technical agencies. RESULTS: Between 2002 and 2010, 1,434 indicators were included in the performance frameworks of the 48 malaria grants awarded in Asia, including 229 impact and 227 outcome indicators, 437 output and 541 input indicators, with an average of 29.9 indicators per grant. The proportion of impact and outcome indicators increased over rounds, with that of input indicators declining from 44.1% in Round 1 to 22.7% in Round 9. CONCLUSIONS: Input indicators, which have predominated the performance frameworks of the Global Fund supported malaria programs in Asia have declined between Rounds 1 and 9. However, increased alignment with internationally adopted indicators included in the Monitoring and Evaluation Toolkit is needed to improve the validity of reported results

    Analysing and Recommending Options for Maintaining Universal Coverage with Long-Lasting Insecticidal Nets: The Case of Tanzania in 2011.

    Get PDF
    Tanzania achieved universal coverage with long-lasting insecticidal nets (LLINs) in October 2011, after three years of free mass net distribution campaigns and is now faced with the challenge of maintaining high coverage as nets wear out and the population grows. A process of exploring options for a continuous or "Keep-Up" distribution system was initiated in early 2011. This paper presents for the first time a comprehensive national process to review the major considerations, findings and recommendations for the implementation of a new strategy. Stakeholder meetings and site visits were conducted in five locations in Tanzania to garner stakeholder input on the proposed distribution systems. Coverage levels for LLINs and their decline over time were modelled using NetCALC software, taking realistic net decay rates, current demographic profiles and other relevant parameters into consideration. Costs of the different distribution systems were estimated using local data. LLIN delivery was considered via mass campaigns, Antenatal Care-Expanded Programme on Immunization (ANC/EPI), community-based distribution, schools, the commercial sector and different combinations of the above. Most approaches appeared unlikely to maintain universal coverage when used alone. Mass campaigns, even when combined with a continuation of the Tanzania National Voucher Scheme (TNVS), would produce large temporal fluctuations in coverage levels; over 10 years this strategy would require 63.3 million LLINs and a total cost of 444millionUSD.Communitymechanisms,whileabletodelivertherequirednumbersofLLINs,wouldrequireamassivescaleupinmonitoring,evaluationandsupervisionsystemstoensureaccurateapplicationofidentificationcriteriaatthecommunitylevel.SchoolbasedapproachescombinedwiththeexistingTNVSwouldreachmostTanzanianhouseholdsanddeliver65.4millionLLINsover10yearsatatotalcostof444 million USD. Community mechanisms, while able to deliver the required numbers of LLINs, would require a massive scale-up in monitoring, evaluation and supervision systems to ensure accurate application of identification criteria at the community level. School-based approaches combined with the existing TNVS would reach most Tanzanian households and deliver 65.4 million LLINs over 10 years at a total cost of 449 million USD and ensure continuous coverage. The cost of each strategy was largely driven by the number of LLINs delivered. The most cost-efficient strategy to maintain universal coverage is one that best optimizes the numbers of LLINs needed over time. A school-based approach using vouchers targeting all students in Standards 1, 3, 5, 7 and Forms 1 and 2 in combination with the TNVS appears to meet best the criteria of effectiveness, equity and efficiency

    High Effective Coverage of Vector Control Interventions in Children After Achieving Low Malaria Transmission in Zanzibar, Tanzania.

    Get PDF
    \ud \ud Formerly a high malaria transmission area, Zanzibar is now targeting malaria elimination. A major challenge is to avoid resurgence of malaria, the success of which includes maintaining high effective coverage of vector control interventions such as bed nets and indoor residual spraying (IRS). In this study, caretakers' continued use of preventive measures for their children is evaluated, following a sharp reduction in malaria transmission. A cross-sectional community-based survey was conducted in June 2009 in North A and Micheweni districts in Zanzibar. Households were randomly selected using two-stage cluster sampling. Interviews were conducted with 560 caretakers of under-five-year old children, who were asked about perceptions on the malaria situation, vector control, household assets, and intention for continued use of vector control as malaria burden further decreases. Effective coverage of vector control interventions for under-five children remains high, although most caretakers (65%; 363/560) did not perceive malaria as presently being a major health issue. Seventy percent (447/643) of the under-five children slept under a long-lasting insecticidal net (LLIN) and 94% (607/643) were living in houses targeted with IRS. In total, 98% (628/643) of the children were covered by at least one of the vector control interventions. Seasonal bed-net use for children was reported by 25% (125/508) of caretakers of children who used bed nets. A high proportion of caretakers (95%; 500/524) stated that they intended to continue using preventive measures for their under-five children as malaria burden further reduces. Malaria risk perceptions and different perceptions of vector control were not found to be significantly associated with LLIN effective coverage While the majority of caretakers felt that malaria had been reduced in Zanzibar, effective coverage of vector control interventions remained high. Caretakers appreciated the interventions and recognized the value of sustaining their use. Thus, sustaining high effective coverage of vector control interventions, which is crucial for reaching malaria elimination in Zanzibar, can be achieved by maintaining effective delivery of these interventions

    Mathematical Evaluation of Community Level Impact of Combining Bed Nets and Indoor Residual Spraying upon Malaria Transmission in Areas where the main Vectors are Anopheles Arabiensis Mosquitoes.

    Get PDF
    Indoor residual insecticide spraying (IRS) and long-lasting insecticide treated nets (LLINs) are commonly used together even though evidence that such combinations confer greater protection against malaria than either method alone is inconsistent. A deterministic model of mosquito life cycle processes was adapted to allow parameterization with results from experimental hut trials of various combinations of untreated nets or LLINs (Olyset, PermaNet 2.0, Icon Life nets) with IRS (pirimiphos methyl, lambda cyhalothrin, DDT), in a setting where vector populations are dominated by Anopheles arabiensis, so that community level impact upon malaria transmission at high coverage could be predicted. Intact untreated nets alone provide equivalent personal protection to all three LLINs. Relative to IRS plus untreated nets, community level protection is slightly higher when Olyset or PermaNet 2.0 nets are added onto IRS with pirimiphos methyl or lambda cyhalothrin but not DDT, and when Icon Life nets supplement any of the IRS insecticides. Adding IRS onto any net modestly enhances communal protection when pirimiphos methyl is sprayed, while spraying lambda cyhalothrin enhances protection for untreated nets but not LLINs. Addition of DDT reduces communal protection when added to LLINs. Where transmission is mediated primarily by An. arabiensis, adding IRS to high LLIN coverage provides only modest incremental benefit (e.g. when an organophosphate like pirimiphos methyl is used), but can be redundant (e.g. when a pyrethroid like lambda cyhalothin is used) or even regressive (e.g. when DDT is used for the IRS). Relative to IRS plus untreated nets, supplementing IRS with LLINs will only modestly improve community protection. Beyond the physical protection that intact nets provide, additional protection against transmission by An. arabiensis conferred by insecticides will be remarkably small, regardless of whether they are delivered as LLINs or IRS. The insecticidal action of LLINs and IRS probably already approaches their absolute limit of potential impact upon this persistent vector so personal protection of nets should be enhanced by improving the physical integrity and durability. Combining LLINs and non-pyrethroid IRS in residual transmission systems may nevertheless be justified as a means to manage insecticide resistance and prevent potential rebound of not only An. arabiensis, but also more potent, vulnerable and historically important species such as Anopheles gambiae and Anopheles funestus

    Design, implementation and evaluation of a national campaign to distribute nine million free LLINs to children under five years of age in Tanzania.

    Get PDF
    BACKGROUND\ud \ud After a national voucher scheme in 2004 provided pregnant women and infants with highly subsidized insecticide-treated nets (ITNs), use among children under five years (U5s) in mainland Tanzania increased from 16% in 2004 to 26.2% in 2007. In 2008, the Ministry of Health and Social Welfare planned a catch-up campaign to rapidly and equitably deliver a free long-lasting insecticidal net (LLIN) to every child under five years in Tanzania.\ud \ud METHODS\ud \ud The ITN Cell, a unit within the National Malaria Control Programme (NMCP), coordinated the campaign on behalf of the Ministry of Health and Social Welfare. Government contractors trained and facilitated local government officials to supervise village-level volunteers on a registration of all U5s and the distribution and issuing of LLINs. The registration results formed the basis for the LLIN order and delivery to village level. Caregivers brought their registration coupons to village issuing posts during a three-day period where they received LLINs for their U5s. Household surveys in five districts assessed ITN ownership and use immediately after the campaign.\ud \ud RESULTS\ud \ud Nine donors contributed to the national campaign that purchased and distributed 9.0 million LLINs at an average cost of $7.07 per LLIN, including all campaign-associated activities. The campaign covered all eight zones of mainland Tanzania, the first region being covered separately during an integrated measles immunization/malaria LLIN distribution in August 2008, and was implemented one zone at a time from March 2009 until May 2010. ITN ownership at household level increased from Tanzania's 2008 national average of 45.7% to 63.4%, with significant regional variations. ITN use among U5s increased from 28.8% to 64.1%, a 2.2-fold increase, with increases ranging from 22.1-38.3% percentage points in different regions.\ud \ud CONCLUSION\ud \ud A national-level LLIN distribution strategy that fully engaged local government authorities helped avoid additional burden on the healthcare system. Distribution costs per net were comparable to other public health interventions. Particularly among rural residents, ITN ownership and use increased significantly for the intended beneficiaries. The upcoming universal LLIN distribution and further behaviour change communication will further improve ITN ownership and use in 2010-2011

    Comparative functional survival and equivalent annual cost of 3 long-lasting insecticidal net (LLIN) products in Tanzania: A randomised trial with 3-year follow up.

    Get PDF
    BACKGROUND: Two billion long-lasting insecticidal nets (LLINs) have been procured for malaria control. A functional LLIN is one that is present, is in good physical condition, and remains insecticidal, thereby providing protection against vector-borne diseases through preventing bites and killing disease vectors. The World Health Organization (WHO) prequalifies LLINs that remain adequately insecticidal 3 years after deployment. Therefore, institutional buyers often assume that prequalified LLINs are functionally identical with a 3-year lifespan. We measured the lifespans of 3 LLIN products, and calculated their cost per year of functional life, to demonstrate the economic and public health importance of procuring the most cost-effective LLIN product based on its lifespan. METHODS AND FINDINGS: A randomised double-blinded trial of 3 pyrethroid LLIN products (10,571 nets in total) was conducted at 3 follow-up points: 10 months (August-October 2014), 22 months (August-October 2015), and 36 months (October-December 2016) among 3,393 households in Tanzania using WHO-recommended methods. Primary outcome was LLIN functional survival (LLIN present and in serviceable condition). Secondary outcomes were (1) bioefficacy and chemical content (residual insecticidal activity) and (2) protective efficacy for volunteers sleeping under the LLINs (bite reduction and mosquitoes killed). Median LLIN functional survival was significantly different between the 3 net products (p = 0.001): 2.0 years (95% CI 1.7-2.3) for Olyset, 2.5 years (95% CI 2.2-2.8) for PermaNet 2.0 (hazard ratio [HR] 0.73 [95% CI 0.64-0.85], p = 0.001), and 2.6 years (95% CI 2.3-2.8) for NetProtect (HR = 0.70 [95% CI 0.62-0.77], p < 0.001). Functional survival was affected by accumulation of holes, leading to users discarding nets. Protective efficacy also significantly differed between products as they aged. Equivalent annual cost varied between US1.2(951.2 (95% CI 1.1-1.4)andUS1.4) and US1.5 (95% CI 1.31.3-1.7), assuming that each net was priced identically at US$3. The 2 longer-lived nets (PermaNet and NetProtect) were 20% cheaper than the shorter-lived product (Olyset). The trial was limited to only the most widely sold LLINs in Tanzania. Functional survival varies by country, so the single country setting is a limitation. CONCLUSIONS: These results suggest that LLIN functional survival is less than 3 years and differs substantially between products, and these differences strongly influence LLIN value for money. LLIN tendering processes should consider local expectations of cost per year of functional life and not unit price. As new LLIN products come on the market, especially those with new insecticides, it will be imperative to monitor their comparative durability to ensure that the most cost-effective products are procured for malaria control

    Costs and cost-effectiveness of malaria control interventions - a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The control and elimination of malaria requires expanded coverage of and access to effective malaria control interventions such as insecticide-treated nets (ITNs), indoor residual spraying (IRS), intermittent preventive treatment (IPT), diagnostic testing and appropriate treatment. Decisions on how to scale up the coverage of these interventions need to be based on evidence of programme effectiveness, equity and cost-effectiveness.</p> <p>Methods</p> <p>A systematic review of the published literature on the costs and cost-effectiveness of malaria interventions was undertaken. All costs and cost-effectiveness ratios were inflated to 2009 USD to allow comparison of the costs and benefits of several different interventions through various delivery channels, across different geographical regions and from varying costing perspectives.</p> <p>Results</p> <p>Fifty-five studies of the costs and forty three studies of the cost-effectiveness of malaria interventions were identified, 78% of which were undertaken in sub-Saharan Africa, 18% in Asia and 4% in South America. The median financial cost of protecting one person for one year was 2.20(range2.20 (range 0.88-9.54)forITNs,9.54) for ITNs, 6.70 (range 2.222.22-12.85) for IRS, 0.60(range0.60 (range 0.48-1.08)forIPTininfants,1.08) for IPT in infants, 4.03 (range 1.251.25-11.80) for IPT in children, and 2.06(range2.06 (range 0.47-3.36)forIPTinpregnantwomen.Themedianfinancialcostofdiagnosingacaseofmalariawas3.36) for IPT in pregnant women. The median financial cost of diagnosing a case of malaria was 4.32 (range 0.340.34-9.34). The median financial cost of treating an episode of uncomplicated malaria was 5.84(range5.84 (range 2.36-23.65)andthemedianfinancialcostoftreatinganepisodeofseveremalariawas23.65) and the median financial cost of treating an episode of severe malaria was 30.26 (range 15.6415.64-137.87). Economies of scale were observed in the implementation of ITNs, IRS and IPT, with lower unit costs reported in studies with larger numbers of beneficiaries. From a provider perspective, the median incremental cost effectiveness ratio per disability adjusted life year averted was 27(range27 (range 8.15-110)forITNs,110) for ITNs, 143 (range 135135-150) for IRS, and 24(range24 (range 1.08-$44.24) for IPT.</p> <p>Conclusions</p> <p>A transparent evidence base on the costs and cost-effectiveness of malaria control interventions is provided to inform rational resource allocation by donors and domestic health budgets and the selection of optimal packages of interventions by malaria control programmes.</p

    Diagnostic Testing of Pediatric Fevers: Meta-Analysis of 13 National Surveys Assessing Influences of Malaria Endemicity and Source of Care on Test Uptake for Febrile Children under Five Years.

    Get PDF
    In 2010, the World Health Organization revised guidelines to recommend diagnosis of all suspected malaria cases prior to treatment. There has been no systematic assessment of malaria test uptake for pediatric fevers at the population level as countries start implementing guidelines. We examined test use for pediatric fevers in relation to malaria endemicity and treatment-seeking behavior in multiple sub-Saharan African countries in initial years of implementation. We compiled data from national population-based surveys reporting fever prevalence, care-seeking and diagnostic use for children under five years in 13 sub-Saharan African countries in 2009-2011/12 (n = 105,791). Mixed-effects logistic regression models quantified the influence of source of care and malaria endemicity on test use after adjusting for socioeconomic covariates. Results were stratified by malaria endemicity categories: low (PfPR2-10<5%), moderate (PfPR2-10 5-40%), high (PfPR2-10>40%). Among febrile under-fives surveyed, 16.9% (95% CI: 11.8%-21.9%) were tested. Compared to hospitals, febrile children attending non-hospital sources (OR: 0.62, 95% CI: 0.56-0.69) and community health workers (OR: 0.31, 95% CI: 0.23-0.43) were less often tested. Febrile children in high-risk areas had reduced odds of testing compared to low-risk settings (OR: 0.51, 95% CI: 0.42-0.62). Febrile children in least poor households were more often tested than in poorest (OR: 1.63, 95% CI: 1.39-1.91), as were children with better-educated mothers compared to least educated (OR: 1.33, 95% CI: 1.16-1.54). Diagnostic testing of pediatric fevers was low and inequitable at the outset of new guidelines. Greater testing is needed at lower or less formal sources where pediatric fevers are commonly managed, particularly to reach the poorest. Lower test uptake in high-risk settings merits further investigation given potential implications for diagnostic scale-up in these areas. Findings could inform continued implementation of new guidelines to improve access to and equity in point-of-care diagnostics use for pediatric fevers
    corecore