317 research outputs found

    Carbon Nanotube Mode-Locked Fiber Laser Generating Cylindrical Vector Beams with a Two-Mode Fiber Bragg Grating

    Get PDF
    We propose and demonstrate a compact all-fiber laser generating cylindrical vector beam (CVB) using carbon nanotubes as the saturable absorber for mode-locking and a two-mode fiber Bragg grating (TM-FBG) as the mode discriminator. Both radially and azimuthally polarized beams with a polarization purity of 90% were obtained by simply adjusting the polarization controllers. The CVB mode-locked fiber laser operates at 1552.9 nm with a 3-dB line width of less than 0.02 nm, generating ns CVB pulses. The all-fiber CVB laser may have potential applications from fundamental research to practical applications, such as particle capture, high-resolution measurement and material processing

    Hurricanes Substantially Reduce the Nutrients in Tropical Forested Watersheds in Puerto Rico

    Get PDF
    Because nutrients including nitrogen and phosphorus are generally limited in tropical forest ecosystems in Puerto Rico, a quantitative understanding of the nutrient budget at a watershed scale is required to assess vegetation growth and predict forest carbon dynamics. Hurricanes are the most frequent disturbance in Puerto Rico and play an important role in regulating lateral nitrogen and phosphorus exports from the forested watershed. In this study, we selected seven watersheds in Puerto Rico to examine the immediate and lagged effects of hurricanes on nitrogen and phosphorous exports. Our results suggest that immediate surges of heavy precipitation associated with hurricanes accelerate nitrogen and phosphorus exports as much as 297 ± 113 and 306 ± 70 times than the long-term average, respectively. In addition, we estimated that it requires approximately one year for post-hurricane riverine nitrogen and phosphorus concentrations to recover to pre-hurricane levels. During the recovery period, the riverine nitrogen and phosphorus concentrations are 30 ± 6% and 28 ± 5% higher than the pre-hurricane concentrations on average

    Three New Ranidae Mitogenomes and the Evolution of Mitochondrial Gene Rearrangements among Ranidae Species

    Get PDF
    Various types of gene rearrangements have been discovered in the mitogenoes of the frog family Ranidae. In this study, we determined the complete mitogenome sequence of three Rana frogs. By combining the available mitogenomic data sets from GenBank, we evaluated the phylogenetic relationships of Ranidae at the mitogenome level and analyzed mitogenome rearrangement cases within Ranidae. The three frogs shared an identical mitogenome organization that was extremely similar to the typical Neobatrachian-type arrangement. Except for the genus Babina, the monophyly of each genus was well supported. The genus Amnirana occupied the most basal position among the Ranidae. The [Lithobates + Rana] was the closest sister group of Odorrana. The diversity of mitochondrial gene arrangements in ranid species was unexpectedly high, with 47 mitogenomes from 40 ranids being classified into 10 different gene rearrangement types. Some taxa owned their unique gene rearrangement characteristics, which had significant implication for their phylogeny analysis. All rearrangement events discovered in the Ranidae mitogenomes can be explained by the duplication and random loss model

    Jumping into metastable 1:1 urea-succinic acid cocrystal zone by freeze-drying

    Get PDF
    Aqueous solutions with molar ratios between urea and succinic acid from 0.3:1 to 3:1 were evaporated at room temperature, and products were pure or mixtures of stable 2:1 urea-succinic acid cocrystals, urea or succinic acid. By freeze-drying, metastable 1:1 urea-succinic acid cocrystal formed. The different mixtures of the 1:1 cocrystals reveal several "hidden" metastable zones in a ternary phase diagram of the 2:1 cocrystal. The formation of the 1:1 cocrystal indicated that the solution composition points in the phase diagram "jump" over the stable zone into the metastable zones

    Online predicting conformance of business process with recurrent neural networks

    Get PDF
    Conformance Checking is a problem to detect and describe the differences between a given process model representing the expected behaviour of a business process and an event log recording its actual execution by the Process-aware Information System (PAIS). However, such existing conformance checking techniques are offline and mainly applied for the completely executed process instances, which cannot provide the real-time conformance-oriented process monitoring for an on-going process instance. Therefore, in this paper, we propose three approaches for online conformance prediction by constructing a classification model automatically based on the historical event log and the existing reference process model. By utilizing Recurrent Neural Networks, these approaches can capture the features that have a decisive effect on the conformance for an executed case to build a prediction model and then use this model to predict the conformance of a running case. The experimental results on two real datasets show that our approaches outperform the state-of-the-art ones in terms of prediction accuracy and time performance

    Cyclic Delay-Doppler Shift: A Simple Transmit Diversity Technique for Delay-Doppler Waveforms in Doubly Selective Channels

    Full text link
    Delay-Doppler waveform design has been considered as a promising solution to achieve reliable communication under high-mobility channels for the space-air-ground-integrated networks (SAGIN). In this paper, we introduce the cyclic delay-Doppler shift (CDDS) technique for delay-Doppler waveforms to extract transmit diversity in doubly selective channels. Two simple CDDS schemes, named time-domain CDDS (TD-CDDS) and modulation-domain CDDS (MD-CDDS), are proposed in the setting of multiple-input multiple-output (MIMO). We demonstrate the applications of CDDS on two representative delay-Doppler waveforms, namely orthogonal time frequency space (OTFS) and affine frequency division multiplexing (AFDM), by deriving their corresponding CDDS matrices. Furthermore, we prove theoretically and experimentally that CDDS can provide OTFS and AFDM with full transmit diversity gain on most occasions
    corecore