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Three New Ranidae Mitogenomes and the Evolution of
Mitochondrial Gene Rearrangements among Ranidae Species
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Abstract Various types of gene rearrangements have been discovered in the mitogenoes of the frog family Ranidae.
In this study, we determined the complete mitogenome sequence of three Rana frogs. By combining the available
mitogenomic data sets from GenBank, we evaluated the phylogenetic relationships of Ranidae at the mitogenome
level and analyzed mitogenome rearrangement cases within Ranidae. The three frogs shared an identical mitogenome
organization that was extremely similar to the typical Neobatrachian-type arrangement. Except for the genus Babina,
the monophyly of each genus was well supported. The genus Amnirana occupied the most basal position among the
Ranidae. The [Lithobates + Rana] was the closest sister group of Odorrana. The diversity of mitochondrial gene
arrangements in ranid species was unexpectedly high, with 47 mitogenomes from 40 ranids being classified into 10
different gene rearrangement types. Some taxa owned their unique gene rearrangement characteristics, which had
significant implication for their phylogeny analysis. All rearrangement events discovered in the Ranidae mitogenomes
can be explained by the duplication and random loss model.
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1. Introduction

Previous studies had revealed that the gene organization
in vertebrate mitogenomes is conserved and that the
mitochondrial D-loop region and the 37 genes were
arranged in same manner among vertebrates (Anderson
et al., 1981; Roe et al., 1985; Tzeng et al., 1992; Zardoya
et al., 1995). However, numerous gene rearrangements in
the mitogenome can independently evolve (Alam ef al.,
2010; Chen et al., 2011; Desjardins and Morais, 1990;
Kurabayashi et al., 2006, 2008, 2010; Liu et al., 2005;
Mindell et al., 1998; Moritz and Brown, 1987; Sano
et al., 2005; Su et al., 2007; Zhang et al., 2013). Gene
rearrangements involve duplications, losses, translocation,
inversion, and/or shuffling of the D-loop region (also
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known as the control region), the replication origin of
the light strand (O,) and the codon genes (including
rRNA genes, tRNA genes and protein-coding genes).
Although distinct mitogenome structural features have
been reported for some amphibians, most amphibians
(including caecilians, salamanders, archaeobatrachians,
and mesobatrachians) generally conform to the typical
Vertebrate-type mitochondrial gene arrangement (Liu
et al., 2016; Mueller and Boore, 2005; Pabijan et al.,
2008; San Mauro et al., 2004, 2006, 2014; Xia et al.,
2010; Zhang et al., 2008; Zhang and Wake, 2009).
Surprisingly, the gene arrangements in the neobatrachian
group are especially diverse and complex, and notably,
their four tRNA genes (LTPF-trn) are commonly
rearranged, which is distinguishable from the vertebrate
ancestral gene order (Kurabayashi et al., 2010; Sumida
etal.,2001; Xia et al., 2014).

The vertebrate mitochondrial rearrangements
appear to be unique, random, generally rare events
that are exceptionally unlikely to arise independently
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in independent evolutionary lineages (Boore and
Brown, 1998; Liu and Huang, 2010; Xia et al., 2010,
2014), although a few convergent or parallel gene
rearrangements have been observed in vertebrate mtDNAs
(Morrison et al., 2002; Wei et al., 2014). The exceptional
mitochondrial gene rearrangement has been thought to
have significant implication for animal phylogenetic
analysis and is considered a powerful phylogenetic
marker also applicable to explore phylogenetic
relationships among various groups at different taxonomic
levels (Boore and Brown, 1998; Macey et al., 1997; San
Mauro et al., 2004, 2014; Wei et al., 2014; Xia et al.,
2010; Xue et al., 2016; Zhang et al., 2008, 2009, 2013).
For example, Odorrana tormota, a species famous for its
ultrasonic communication, was previously regarded as
a member of Amolops (Frost, 2017). However, this frog
shares the same mitochondrial gene arrangement (the
trnH was translocated to D-loop downstream, forming a
HLTPF-trn cluster) with most Odorrana frogs, not with
the Amolops frogs (conventional LTPF-trn cluster) (Su
et al., 2007).

The family Ranidae, also known as ranid frogs, is
one of the most species-rich and fascinating groups
of vertebrates (Che et al., 2007; Li et al., 2014; Frost,
2017). Ranidae represents one of the main components of
Neobatrachia and contains approximately 380 described
species, belonging to 23-24 genera (AmphibiaWeb, 2017;
Frost, 2017). A total of 31 complete and 12 near-complete
ranid mitochondrial genomes have been submitted to
GenBank, and many novel gene rearrangement types
have also been discovered (e.g. Li ef al., 2014, 20164, b;
Kurabayashi ef al., 2010; Su et al., 2007). Kurabayashi
et al. (2010) reported the partial or complete mtDNAs of
10 ranids and found most mitogenomes were different
from the typical Neobatrachian-type gene arrangement.
The diversity of mitochondrial gene arrangements in ranid
species is unexpected high (Kurabayashi et al., 2010).

Here, we decode the mitochondrial genomes of three
ranid frogs, conduct comparative genome analysis
with all available Ranidae mitogenome sequences
submitted to GenBank, and perform the phylogenetic
analysis among Ranidae species. Our aim was to
conduct an in-depth investigation, including examining
the phylogenetic relationships, redescribing the novel
mitogenome structures, analyzing exhaustively the
genome reorganization types, and inferring the possible
mechanisms and evolutionary pathways of gene
rearrangements as well as its systematic implication
among ranid frogs. Our study helps to understand
mitogenome evolution and phylogenetic relationships of

Ranidae species.
2. Materials and Methods

2.1. Specimen collection, DNA extraction, and
PCR amplification Specimens of Rana kukunoris,
R. chaochiaoensis and R. omeimontis were obtained
from Zoige County (33.57066° N, 102.96348° E, 3446
m a.s.l.), Shimian County (29.02461° N, 102.38626°
E, 2 085 m a.s.l.), and Yucheng District (29.97900° N,
102.98117° E, 618 m a.s.l.) in Sichuan Province, China,
respectively, and stored at —80°C. A TaKaRa MiniBEST
Universal Genomic DNA Extraction Kit Ver.5.0 (Takara,
Dalian, China) was used to extract total genomic DNA
from a frozen tissue sample of the thigh muscle according
to the detailed manufacturer’s protocol. Primer sets used
to amplify the entire mitogenomes of the three Rana
species are shown in Table S1.

2.2. Sequence assembly and annotation The
overlapping sequence fragments were assembled by
the program Seqmen (DNAstar, Madison, WI, USA).
The annotations of rRNA genes (rRNAs), tRNAs,
protein coding genes (PCGs) and D-loop region and
the definitions of their respective gene boundaries
were performed by the MitoAnnotator service (http://
mitofish.aori.u-tokyo.ac.jp/annotation/input.html). The
ARWEN program (http://mbio-serv2.mbioekol.lu.se/
ARWEN/) was also utilized to infer the tRNAs via their
proposed cloverleaf secondary structure and anticodon
sequences. All annotation results were verified via
alignment with homologous regions from other reported
Rana mitochondrial genomes. Finally, the mitochondrial
genetic diagrams were generated by the OGDRAW
program (http://ogdraw.mpimp-golm.mpg.de).

2.3. Data collection We downloaded 32 complete and 12
partial Ranidae mitochondrial genomes from GenBank
(Table 1). Eight non-Ranidae mitogenomes were used as
out-groups in the phylogenetic analysis. The taxonomic
names of all species were based on ‘Amphibian Species
of the World 6.0” (Frost, 2017). There were many errors
in some mitogenome annotations previously submitted
to GenBank, and these mitogenome sequences should
be re-annotated in systematic or comparative research
(Cameron, 2014). In order to avoid interference caused by
these errors in our subsequent analysis, we reanalyzed all
sequences using the online services MitoAnnotator and
ARWEN. The important corrections were listed in Figure
S1.

2.4. Genome rearrangement analysis We compared



No. 2 Jiandong YANG et al.

Evolution of Ranidae Mitochondrial Gene Rearrangements 87

and analyzed re-annotated mitogenomes, together
with the three new Rana frog data, with respect to
mitogenome gene order (Chen et al., 2011). The
definition of mitogenome organization types is based
on the comparative results. To clarify, if the gene
arrangements of the new mitogenome deviate from the
typical Vertebrate-type gene arrangement (Type A) and
the typical Neobatrachian-type gene arrangement (Type
B), we will divide it into a new type (Figure 1). The long
intergenic spacer frequently found in the closely related
species and the pseudogene are also taken into account.
If we cannot determine that the long intergenic spacer
(more than 20 bp in size) frequently found in the closely
related species is a pseudogene via homologous sequence
alignments, for convenience, we will temporarily call it as
“gap” in this study.

Typical Vertebrate-type gene arrangement

Typical Neobatrachian-type gene arrangement
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2.5. Phylogenetic tree analysis Firstly, all termination
codons of 13 PCGs nucleotide sequences were manually
deleted. Then, the remaining fragments of each PCG
were separately aligned based on their translated amino
acid sequences by Muscle implemented in MEGA6.06
(Tamura et al., 2013), and the two rRNAs sequences
were separately aligned by ClustalX2 (Larkin ez al.,
2007). Subsequently, all ambiguous alignment regions
were trimmed by the Gblocks Server (http://molevol.
cmima.csic.es/castresana/Gblocks_server.html), the type
of sequence was set to Codons (for PCGs) or DNA (for
rRNAs) and all options for a less stringent selection
were selected. Finally, the 15 trimmed alignments were
concatenated into a single dataset to infer the phylogenetic
relationships of Ranidae. For the concatenated sequence
matrix, two phylogenetic trees were constructed using
both Bayesian inference (BI) and maximum likelihood
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Figure 1 Mitochondrial genomic organizations of Ranidae frogs. Each tRNA gene is represented by the standard one-letter amino acid code,
and S, = rnS"™, S, = trnS*, L, = truL“™, L, = trnL""®. Other genes are abbreviated as follows: /25 and 768, 12S and 16S ribosomal RNA;
ATP6 and ATPS, adenine triphosphatase subunits 6 and 8; COI-3, cytochrome c oxidase subunits 1-3; CYTB, cytochrome b; ND1—6 and 4L,
NADH dehydrogenase subunits 1-6 and 4L. O, CR, ¥, and gap denote replication origin of light strand, D-loop region, pseudogene, and
intengenic spacer region, respectively. Genes encoded by the heavy and light strand are denoted at the top and bottom of each gene rectangle
box, respectively. The sizes of the boxes do not reflect actual gene length.
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(ML) approaches. The ML analysis was conducted by
PhyML3.1 (Guindon ef al., 2010) under the GTR + I +
G evolutionary model determined by jModelTest2.1.5
(Darriba ef al., 2012), with 100 replicates for the non-
parametric bootstrap analysis. The BI analysis was
performed by MrBayes3.2.2 (Ronquist and Huelsenbeck,
2003). For the BI analysis, we firstly partitioned the data
into 15 partitions by gene, and then used jModelTest2.1.5
to select the best-fit model of nucleotide substitution for
each partition with the Bayesian Information Criterion,
which was preferred for model selection (Luo ef al.,
2010). We performed two independent runs for 5 000 000
generations, sampled every 1 000 generations,
conservatively discarded the first 25% of generations
as burn-in, and visualized the majority-rule (>50%)
consensus trees using FigTreel.4.2 (http://tree.bio.ed.ac.
uk/software/figtree/).

3. Results

3.1. Mitogenome Characterization and analysis of
three new Rana mitogenomes

3.1.1. Genome organization The complete nucleotide
sequences of the R. chaochiaoensis, R. kukunoris and
R. omeimontis mitogenomes have been determined
successfully in this study and submitted to the GenBank
database under accession numbers KU246048—
KU246050 (Table 1). All three mitogenomes were
circular, consisting of two rRNAs, 13 PCGs, 22 tRNAs
and four intergenic spacer regions (Table S2; Figure S2).
The largest intergenic spacer region was located between
CYTB and trnL", which was the typical position of
D-loop region. We determined the smaller one located in
the WANCY-trn cluster as O, region based on its typical
stem-loop structure and the surrounding 5’-GCCGG-3’
motif (on the light strand). The remaining two gaps were
discovered at the two flanks of ND5 gene (Figure S2).
All three mitogenomes retained the identical genomic
organization (Figure 1; Figure S2), and they were 18 591
bp, 18 863 bp, and 19 934 bp in size, respectively (Table
1). The overall base composition of the light strand was
28.85%-29.51% for T, 28.04%—-28.45% for C, 27.46%—
27.88% for A and 14.56%—15.06% for G with an A + T
bias (56.49%—57.39%).

3.1.2. Ribosomal RNA and Protein-Coding genes The
12§ and 16S rRNA of three mitogenomes were located
between trnF and trnL""" and separated by trnV. The size
of 125 and 16S rRNA were 931 bp and 1582 bp for R.
omeimontis, 930 bp and 1576 bp for R. chaochiaoensis,

and 929 bp and 1 576 bp for R. kukunoris, respectively
(Table S2). The overall base composition of two rRNAs
were shownas A>C>T>G.

All mitochondrial genomes shared a set of 13 PCGs,
including ND1-6, ND4L, CO1-3, ATP8, ATP6 and
CYTB, and only ND6 was encoded on the L-strain (Table
S2; Figure S2). Most PCGs began with the typical ATG
codon, excepting COI, ATP6 and ND4L initiated with
GTG, and ND! started at ATC (for R. omeimontis) and
GTG (R. chaochiaoensis and R. kukunoris). Six PCGs
harbored the traditional complete termination codons
TAA (ATPS8, ND4L and CYTB), AGA (NDS5 and ND6) and
AGG (CO1I), whereas the remaining seven PCGs used T
(Table S2).

3.1.3. Transfer RNA genes Excluding the #nS'" gene,
the inferred secondary structures of the other 21 tRNAs of
the three mitogenomes conform to the common structural
features of mitochondrial tRNAs (Table S2; Figure 1).
The base mutations of tRNAs among three mitogenomes
existed in the stems and the loops structure.

3.2. Molecular phylogenetic analysis The final
concatenated mtDNA sequence matrix for 48 species was
13 737 bp in size, including 8 777 variable sites of which
974 were singleton sites. Two phylogenetic reconstruction
methods (ML and BI) yielded identical tree topologies
based on 13 PCGs and two rRNAs, and they favored the
following clades and/or relationships of Ranidae (Figure
2): (1) the most basal position of the genus Amnirana;
(2) the secondary basal position of the genus Glandirana,
(3) the clade of Pelophylax + Amolops; (4) the paraphyly
of Babina interweaved with Sylvirana; (5) the clade of
Odorrana; (6) the monophyly of Lithobates and Rana,
(7) the clade Babina + (Odorrana + (Lithobates + Rana)).
Within the lineage Ranidae, clade 7 formed the sister
taxon to clade 3, but no sufficient statistical support
existed for this relationship (BP =41, BPP = 0.90).

3.3. Ranidae gene rearrangement analysis According
to our comparison of genome organization, we
summarized 10 different gene arrangements (Figure 1;
Table 2). All rearrangements occurred in both the ND4—
trnT and the trnW—COI regions (Figure 1; Figure 3).

Our results showed that Type B (also termed as the
typical Neobatrachian-type arrangement) was the most
common type in ranid (or neobatrachian) mitogenomes.
All Pelophylax frogs and another two Amolops frogs, A.
ricketti and A. wuyiensis (namely the A. ricketti species
group), expressed the Type B. Additionally, Type B was
the most basic type, and another nine novel types (from
Type C to Type K) were derived from it via diverse
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rearrangement pathways.

Type C was only discovered in Amnirana albolabris
(Figure 2; Table 2). In this type, the positions between
trnA and trnN-O,-trnC were exchanged accompanied
with the insertions of some non-coding regions and
finally yielding the novel trnW-gap-trnN-O,-trnC-gap-
trnA-gap-trnY order (Figure 3). Type D was unique to the
Glandirana frogs, which was characterized by the rnS*”"
pseudogene next to #rnH (Figure 2; Table 2). Type E was
shared by Amolops mantzorum species group, which was
different from the Type B possessed by the 4. ricketti
species group in terms of location of the O, structure

(Figure 2; Table 2). The O, was translocated from the
downstream to the upstream position of the trnA-trnN,
and then several non-coding regions were inserted into
this block, yielding the distinctive trnlW-gap-O, -gap-trnA-
trnN-gap-trnC-trnY order (Figure 3).

Type F was the most common type (32.50%) in ranid
mitogenomes so far (Table 3). Type F appeared in most of
Rana (including our three species), all Lithobates, several
Babina and one Sylvirana frogs (Figure 2; Table 2). Type
G was shared by the two Babina frogs (Figure 2; Table
2). A large number of gene rearrangements were found in
Type G. The variation of gene rearrangement in Odorrana
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Figure 2 The ML and BI phylogeny trees derived from the concatenated sequences of 13 protein coding genes and two rRNA genes among
Ranidae. Numbers above the lines or beside the nodes are rapid bootstrap proportions calculated with 1 000 replicates and Bayesian posterior
probabilities, respectively. The different color represents the different genomic rearrangement features of each species.
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Table 2 Frequency of each mitochondrial genome rearrangement type in family Ranidae.

Types No. of genera”  No. of species’ Species name

A 0 (0.00%) 0(0.00%) None
Pelophylax ridibundus IN627421, P. ridibundus IN627423, P. kurtmuelleri KP814011, P. cypriensis
KP814009, P. cretensis KM677928, P. epeiroticus KP814010, P. lessonae IN627425, P. lessonae

B 2 (22.22%) 12 (30.00%)  JN627426, P. lessonae IN627422, P. lessonae IN627424, P. shqgipericus KP814012, P. nigromaculatus
AB043889, P. plancyi EF196679, P. chosenicus JE730436, Amolops wuyiensis KI933509, A. wuyiensis
KM386618, A. ricketti KF956111

C 1 (11.11%) 1(2.50%)  Amnirana albolabris JX564871

D 1 (11.11%) 3(7.50%) Glandirana rugosa KF¥771341, G. emeljanovi KF771343, G. tientaiensis KF771342, G. tientaiensis
KJ941041

E 1 (11.11%) 3(7.50%)  Amolops tuberodepressus KR559270, A. loloensis KT750963, A. mantzorum KJ546429
Rana kukunoris KU246049, R. cf. chensinensis KF898356, R. huanrensis KT588071, R. dybowskii
KF898355, R. omeimontis KU246050, R. chaochiaoensis KU246048, R. draytonii KP013110

0, 0, > £ ) E)

F 4 (44.44%) 13 (32.50%) Lithobates catesbeianus AB761267, L. catesbeianus KF049927, L. sylvaticus KP222281, L. okaloosae
KP013096, Babina okinavana AB761266, B. adenopleura 1X033120, Sylvirana guentheri KM035413

G 1 (11.11%) 2 (5.00%)  Babina holsti AB761264, B. subaspera AB761265

H 1 (11.11%) 2 (5.00%)  Odorrana tormota DQ835616, O. margaretae KI815050

I 1 (11.11%) 1(2.50%)  Odorrana ishikawae AB511282

J 1 (11.11%) 1(2.50%)  Odorrana schmackeri KJ149452

K 1 (11.11%) 2 (5.00%)  Rana kunyuensis KF840516, R. coreana KM590550

"The total of genera and species used in this study is 9 and 40, respectively.

Table 3 The mitochondrial genome types in the nine genera of the
family Ranidae.

Genera No. of species Types
Amnirana 1 C
Amolops 5 B.E
Babina 4 F,G
Glandirana 3 D
Lithobates 3 F
Odorrana 4 HL]J
Pelophylax 10 B
Rana 9 E K
Sylvirana 1 F

was quite large, and four Odorrana species held the three
types (H, I, and J). In all three Odorrana rearrangement
types, the #rnH was translocated to D-loop downstream,
forming a HLTPF-trn cluster. Moreover, the position
exchange between fnN and O, was only discovered
in Type 1 (O. ishikawae) and Type J (O. schmackeri).
In particular, the O, region was triplicate in Type I (O.
ishikawae). R. kunyuensis and R. coreana shared the
identical arrangement order Type K. Compared with
Type F, this type showed more complex variations: one

additional D-loop region was inserted into the upstream

of TPF-trn cluster, and the ND5 was translocated from
the typical #nS'“" downstream to the #nL““" downstream
(Figure 3).

4. Discussion

4.1. Characteristics analysis of the Rana mitogenomes
Three Rana mitogenomes shared the identical genomic
organization with those of R. cf. chensinensis, R.
dybowskii, R. huanrensis and R. draytonii (Dong et al.,
2016; Li et al., 2016a; Figure S1), and this genomic
organization was similar to the typical Neobatrachian-
type (Kurabayashi et al., 2010; Sumida et al., 2001).
The variation of molecular size and base composition of
entire genome among all published Rana mitogenomes
were primarily due to the duplication of D-loop region
and the variable numbers of tandem repeat element in
D-loop region (Dong et al., 2016; Li et al., 2016a, b). The
incomplete termination codon T frequently appeared in
seven PCGs, and it was completed by post-transcriptional
polyadenylation (Ojala et al., 1981).

4.2. Molecular phylogenetic analysis Overall, the genus
level phylogeny reconstructed in our study was congruent
with the hypotheses from Li et al. (2014) and Bu et al.
(2016) but conflicted with other results from some
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Figure 3 Putative mechanism of gene rearrangement of the mitochondrial genome according to the duplication and random loss model. The
information of each gene or region is the same as those in Figure 1. The solid arrows represent duplication events and the dashed arrows
represent random loss events. The green and blue boxes represent duplication regions; the gray and black boxes represent partial loss and
complete deletion, respectively.
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researchers (e.g. Che et al., 2007; Kurabayashi et al.,
2010; Ni et al., 2016; Pyron and Wiens, 2011; Wiens
et al., 2009; Xia et al., 2014). Our trees placed
Glandirana at a more basal position with strong support
(BP = 84, BPP = 1.00), which was in agreement with the
result of Bu et al. (2016) but different from other reports
that located the Glandirana in a nested position within the
Ranidae phylogenetic tree with weak statistical support
(e.g. Che et al., 2007; Kurabayashi et al., 2010; Ni
et al., 2016; Xia et al., 2014). By reviewing the previous
work, we found [Babina] and [Lithobates + Rana] had
been considered as the sister group of Odorrana. Using
the single gene or very few genes (e.g. two rRNAs), Che
et al. (2007), Kurabayashi et al. (2010), Wiens et al.
(2009) and Xia et al. (2014) found [Babina] was the sister
group of Odorrana. Kakehashi et al. (2013) reconstructed
the same phylogenetic relationship using two rRNAs and
13 PCGs and proposed plausible explanation according
to the probable gene rearrangement mechanisms (see
below).

However, our results robustly supported that
[Lithobates + Rana] was the sister group of Odorrana,
which was compatible with other studies based on 13
PCGs (e.g. Buetal., 2016; Li et al., 2014; Ni et al., 2016;
Xue et al., 2016). Kakehashi et al. (2013) also noted
that the genus Babina species formed a monophyletic
group (BP = 100). However, the S. guentheri was nested
in Babina clade in our phylogenetic trees, as previously
reported by Ni et al. (2016). The taxonomic history of S.
guentheri was somewhat complicated (Wu et al., 2016).
From 1882 to 2010, this species was successively placed
into several genera, such as Rana, Hylorana, Hylarana,
and Boulengerana (see Frost, 2017). Most recently, it has
been classified into Sylvirana based on two mitochondrial
and four nuclear gene data (Oliver ef al., 2015).
Nonetheless, more convincing evidence is indispensable
for determining the taxonomic status of this frog.

4.3. Extensive gene rearrangement in Ranidae
Kurabayashi et al. (2010) stated that the diversity of
the mitochondrial genome reorganization in ranids was
unexpected. In this study, we summarized 10 different
gene orders, and found that all rearrangements occurred
at the ND4—trnF region and the trnW—-COI region.
In Caudata mitogenomes, the gene rearrangements
also appeared at the two regions (Xia et al., 2010). In
Gymnophiona mitogenomes, the gene rearrangements
occurred more at the trnW—-CO1 region (San Mauro
et al., 2006). Li et al. (2010) indicated that the Anura
mitogenome rearrangements mainly occurred at the flanks
of D-loop region, the margin of O, structure and the /QM-

trn genes cluster. Moreover, we found many rearranged
patterns, such as WAO, 0,0, NCY, WO, ANCY, WNO, CAY
and WAO, NCY, are discovered in some Ranidae
mitochondrial genomes (Figure 1; Figure 2). Therefore,
we speculated the trnW—CO1 region and the ND4—trnF
region should be the hotspots of Ranidae mitochondrial
genomes rearrangement.

All Amolops mitogenomes analyzed in this study
were classified as Type B and Type E, and they were
different from the previously determined A. larutensis
rearrangement type (Kurabayashi et al., 2010; Figure 1),
implying that the Amolops gene rearrangements were
various. In particular, the O, region was triplicate in O.
ishikawae mitogenome (Type I). The triploidization of
the O, was unique to this frog in Ranidae, but it was
also discovered in the mitogenome of Callulina kreffti
(Brevicipitidae), another Neobatrachia frog (Zhang et al.,
2013). In addition, the diploidization of the O; was found
in the 4. larutensis mitogenome (Kurabayashi et al.,
2010).

Interestingly, R. kunyuensis and R. coreana shared one
additional D-loop region and duplicate D-loop regions
was not unique to these two ranids (Li ef al., 2016b),
because it was also discovered in another Ranidae
species A. larutensis (Kurabayashi et al., 2010), and
other Neobatrachia taxa, such as Afrobatrachia frogs
(Kurabayashi and Sumida, 2013), Mantellidae frogs
(Kurabayashi et al., 2006, 2008), Rhacophorus schlegelii
(Sano et al., 2005), and Hoplobatrachus spp. (Alam
et al., 2010; Yu et al., 2012b). Wang et al. (2015) found
that the duplicated D-loop regions within one individual
were almost identical in the bushtits mitochondrial
genomes, and further supposed that homologous
recombination occurred between paralogous D-loop
regions from different mtDNA molecule was proposed
as the most suitable mechanism for concerted evolution
of the duplicated D-loop regions. Unfortunately, in this
study we cannot speculate the mechanism for this Rana
duplicated D-loop regions.

4.4. Mechanisms and systematic implication of
mitochondrial gene rearrangement Generally, the
vertebrate mitochondrial gene rearrangement was
relatively rare and random (Xia ef al., 2014). As stated
by many scholars, all observed gene rearrangement
events of vertebrate mitogenomes could be classified as
translocation, inversion, shuffling, deletion, or duplication
(Dowton et al., 2003; Macey et al., 1997), and gene
shuffling was the prevailing gene rearrangement type
(Macey et al., 1997). In our study, only gene translocation
and duplication were discovered in these Ranidae
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mitogenomes, and gene shuffling was more common than
gene duplication (Figure 1; Figure 3). Unlike the D-loop
region and O, structure, which tend to gene duplication,
the tRNAs genes and PCGs tend to gene shuffling
(Figure 1; Figure 3). For the formation of rearrangement
types, several different rearrangement mechanisms were
proposed, such as the tandem duplication and random loss
model (Macey et al., 1997; Moritz and Brown, 1987), the
tandem duplication and non-random loss model (Lavrov
et al., 2002), and the intramitochondrial recombination
model (Poulton et al., 1993).

Currently, the duplication and random loss model can
be used to explain for most of the animal mitogenome
reorganization (e.g. Kakehashi et al., 2013; Kurabayashi
et al., 2008). In this model, initially, a duplication
including a part of the entire genome happened
accidentally because of replication errors (either slipped-
strand mispairing or inaccurate termination); then,
one of the duplicates of the included genes (or non-
coding region) was converted into a pseudogene and
subsequently excised from the genome through an
accumulation of natural mutations (Dowton et al., 2003;
Macey et al., 1997; Moritz and Brown, 1987). In the
present study, the duplication and random loss model
also could explain all rearrangement events discovered
in the Ranidae mitogenomes (Figure 3), although some
of our views were not compatible with previous views
(e.g. Kakehashi et al., 2013; Kurabayashi et al., 2010).
Additionally, it was almost impossible that the same gene
order was generated independently through different
pathways among different taxa.

The vertebrate mitochondrial rearrangement was
regarded as unique, random, and a generally rare event
(Boore and Brown, 1998; Liu and Huang, 2010; Xia
et al., 2010, 2014), and the occurrence of identical gene
rearrangements in two or more lineages indicated that
this gene rearrangement type was a synapomorphic
type and these lineages were derived from a common
ancestor (Macey ef al., 1997), although a few convergent
or parallel gene rearrangements have been observed
in the vertebrate mtDNAs (e.g. Morrison et al., 2002;
Wei et al., 2014). The remarkable mitochondrial gene
rearrangement contributes to our understanding of
phylogenetic relationships and is now considered as a
valuable molecular marker (Boore and Brown, 1998;
Kurabayashi ez al., 2008, 2010; Macey et al., 1997), being
widely applied to explore the phylogenetic relationships
among various groups at different taxonomic levels (e.g.
Kakehashi ef al., 2013; Kurabayashi et al., 2006, 2010;
Liu et al., 2016; San Mauro et al., 2004, 2014; Wei

et al., 2014; Xia et al., 2010; Xue et al., 2016; Zhang
etal., 2008, 2009, 2013).

As mentioned above, the previous studies considered
[Babina] or [Lithobates + Rana] as the sister taxon of
Odorrana (e.g. Kakehashi et al., 2013; Kurabayashi et
al., 2010; Ni et al., 2016; Xue et al., 2016). Additionally,
Kakehashi ef al. (2013) further pointed out that the
[Babina + Odorrana] clade shared a common ancestral
gene arrangement type.

Alternatively, we proposed another explanation: all
taxa, incluing Babina, Sylvirana, Odorrana, Lithobates,
and Rana, shared a common ancestral gene order Type
F (Figure 2; Figure 3), but this order was completely
different from the pattern (ND4-trnH-trnS,-ND5-ND6-
trnE-CYTB-D-loop-trnH-trnS,-ND5-ND6-trnE-trnL -
trnT-trnP-trnF-12S-trnV-12S) inferred by Kakehashi
et al. (2013). Several lineages possessed their distinctive
gene rearrangements, including Glandirana spp., Amolops
mantzorum species group, Amolops ricketti species
group, Pelophylax spp., and the Rana + Lithobates
lineage (excluding R. kunyuensis and R. coreana). The
genus Amolops was a complicated group. In sibling 4.
larutensis, a lot of mitochondrial gene rearrangements
(including duplication of D-loop region, duplication of
O,, transpositions of #nK, trnH and trnG-ND3 block)
had been discovered by Kurabayashi et al. (2010).
Considering the fact that this species possessed a nested
position within Amolops, Kurabayashi et al. (2010)
inferred the genomic reorganization was likely to have
occurred in a common ancestor of Amolops, or during
the diversification of this taxon. Now, the latter was
confirmed by more available mitogenomes. In Glandirana
spp., the trnS*“” pseudogene was proved as a valuable
molecular marker for its phylogenetic analysis.

5. Conclusion

The three Rana frogs shared the identical mitogenome
arrangement type, which was extremely similar to the
typical Neobatrachian-type arrangement shared by most
frogs. The phylogenetic analysis using PCGs and rRNAs
sequences from 55 mitogenomes demonstrated that the
genus Amnirana occupied the most basal position among
the Ranidae and the [Lithobates + Rana] was the closest
sister group of Odorrana. The diversity of Ranidae
mitogenome arrangements was unexpected high, and
the 47 mitogenomes of 40 ranids were classified into 10
different gene rearrangement types. Some taxa owned
their distinctive gene rearrangement characteristics,
which had significant implication for their phylogeny
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analysis. The tandem duplication and random loss model
can explain all rearrangement events discovered in all
Ranidae mitogenomes.
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Appendix

Table S1 Details of the primers used to amplify the entire mitogenomes of the three Rana species.

Rana omeimontis Rana chaochiaoensis  Rana kukunoris N
No. Name Sequences (5' end-3' end) Source

Location Length Location Length Location Length

AACGCTAAGATGAACCCTAA

1 FSO1 250 5290 250 5364 250 5279 AAAGTTCT Kumazawa et al., 2004
NDldaH 5539 5613 5528 AAAATCAGCGGGTRAATATCAC Kumazawa et al., 2004

2 RAsnF 5336 1901 5330 1981 5325 1901 TATCCAGCGAGCTTCATT Li 2014, unpubl. data
RAspR1 7236 7310 7225 GTCTTGGAAGCCGAGTTG Li 2014, unpubl. data

3 RSerlF1 7067 1265 7 141 1265 7056 1265 AAAGGAGGGAATTGAACC Li 2014, unpubl. data
RATP6R3 8331 8405 8320 AAGAAGGCTCATTTGTGG Li 2014, unpubl. data

4 RLysF1 7903 1719 7971 1719 7892 1719 TGTAGGTTAGCGACAGCC Li 2014, unpubl. data
RGIyR1 96 21 9695 9610 GGTGATTGGAAGTCATCTGT Li 2014, unpubl. data

5 EMA4-F 9188 2023 - - - - CCTCCTTAATACAGCCGTTC This study
EM4-R 11210 - - TGGCTAACTGAAGATATAGCAA This study

6 RCO3F5 - - 9350 2050 9265 2049 CTTCAAGCCCTTACTATTACA Li 2014, unpubl. data
RND4R2 - 11399 11313 GTTGGCAAGGCAGAAGAG Li 2014, unpubl. data

7 RND4F1 10747 1061 10 821 1 062 10735 1062 CAAGAACGACGMCTWGAAG Li 2014, unpubl. data
RNDS5SR2 11 807 11 882 11 796 GYGGTGAGGAATTAGCAG Li 2014, unpubl. data

8 Rch67F 11334 655 11 408 656 11322 646 TGAGCGTACAAATAGCCGAAC This study
Rch67R 11988 12 063 11967 AGTGAAATAAAGAATGCCGTT This study

9 RND4F6 11714 2969 11789 2493 11703 2654 AAAAACAYTAGATTGTGATTC Li 2014, unpubl. data
RND6R4 14682 14 281 14 356 TATTAKTRGGACTTTTGG Li 2014, unpubl. data

10 RNDG6F1 14 500 704 14 099 704 14174 704 ASGCAGCACARTAAGCAA Li 2014, unpubl. data
RcytbR3 15203 14 802 14 877 CGCCTCARAAGGAYATTTG Li 2014, unpubl. data

11 EMI-F 15011 3093 - - - - CTTCGTAACCTCCACGCTA This study
EMI-R 18 103 - - CTTAAAGAGACACTTGCACCA This study

12 ZJ1-F - - 14679 2207 - - CTCTATTACGGCTCATACCTC This study
ZJ1-R - 16 885 - TCGGTAATCAAGATAAGTCCA This study

13 GY2-F - - - - 14559 2122 CTAGGCGTATGTCTTATTGCTC This study
GY2-R - - 16 680 CGTGTGTTCGATCAACCAA This study

14 XRACRSF5

15 EM2-F 17908 2743 - 2613 - 2667 TTATCGACTACTCCGTGCAT This study
ZJ2-F - 16694 - ATAAGCCAGTCCTTAATCCTG This study
GY1-F - - 16912 ATCTTCATTATTCAAATGGCT This study
12S_430Rev 716 715 715 GGGTATCTAATCCCAGTTTG Sumida et al., 2002

Y=C/T,R=A/G,W=A/T,M=A/C,K=G/T, S =G/C
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Rana chaochiaoensis KU246048 trnsS,
Amolops loloensis KT750963 trnS,
Pelophylax nigromaculatus AB043889 trnS,
Glandirana rugosa AB511298 ¥trnS,
Glandirana rugosa KF771341 PtrnS,
Glandirana tientaiensis KJ941041 “trnS;”
Glandirana tientaiensis KF771342 ¥trnS,
Glandirana tientaiensis KF771279 ¥trnS,
Glandirana tientaiensis KF771280 ¥trnS,
Glandirana emeljanovi KF771343 VtraS,
Glandirana emeljanovi KF771278 PtraS,

-GAGCTTAACTGGAGTAGTGGGAACTGCTAATTACCCACGCCCACAGTTCAATTCTGTGGTCTGCTCA-
-GAGCCCGCCTGGGRTAATGAGAACTGCTAATT-CTCACCACCATGGTTCGAT TCCATGGCCCGCTCG~
-GAGCCCGACTGGAGTAATGAGAACTGCTAATTCCTCACCCCCATGGTTCAAT TCCATGGCCCRCTCG-
—AAGCC-GTCTGGCGTTT-AAGAACTCCCAGTTCCTCT-—ACCATGGTTCAATTCCTTGGCT-GCTTA-
—AAGCC-GTCTGGCGTTT-AAGAACTCCCAGTTCCTCT-—ACCATGGTTCAATTCCTTGGCT-GCTTA-
CGAGCC-ATCTGGCGTAA-AAGAACCTCAAGTTCCCCT-—ACCACGRTTCAATTCCATGGCCCGCTCAC
~GAGCC-ATCTGGCGTAA-AAGAACCTCAAGTTCCCCA--ACCACGGTTCAATTCCATGGCCCRCTCA-
~GAGCC-ATCTGGCGTAA-AAGAACCTCAAGTTCCCCA--ACCACGGTTCAATTCCATGGCCCECTCA-
-GAGCC-ATCTGGCGTAA-AAGAACCTCAAGTTCCCCA-—ACCACGGTTCAAT TCCATGGCCCGCTCA-
-GAGCC-GTCTGGCGTTA-TAGAACTCCTAGTTCCCTTC-ACCAAGGTTCAATTCCTTGGCC-GCTTA-
—~GAGCC-GTCTGGCGTTA-TAGAACTCCTAGTTCCCTTC-ACCAAGGTTCAATTCCTTGGCC-GCTTA-
HRK kR Kk HRKE K K K K HHK KRRk RRK KKK ok

Rana chaochiaoensis KU246048 trnH
Amolops loloensis KT750963 trnll
Pelophylax nigromaculatus AB043889 trnll
Odorrana margaretae KJ815050 trufl
Odorrana tormota DQ835616 trnH
Odorrana ishikawae AB511282 truH
Odorrana hosii AB511284 trnH
Odorrana narina AB511287 trnH
Odorrana cf. schmackeri AB311290 trnH
Odorrana schmackeri KJ149452 WtrnH
Odorrana schmackeri KP732086 ¥trnl

GTG-GATATAGTTTAAGTAAAACACTAGATTGTGATTCTAGCAATAAAGGTTAAAATCCTTTTGTACACC
GTG-AATATAGTTTTAAAAAAATTCTAGGTTGTGATTCTAGAGATAGAGGTTGAAACCCTCTTGTTCACC
GTG-AATATAGTTTAAGAAAAACCCTAGATTGTGATTCTAGAAAGAAAGGTTGAACCCCTTTTATTCACC
ATG-AGTGTAATTAAGTAATAATACTAGGCCGTGACTCTAGAATCGAAAGTTAAAACCCTTCTACTCATC
ATA-AGTATAATTAAACTATAATACTAGGCTGTGACTCTAGAATTGAAAGTTAAAACCTTTTTACTTATC
ATG-AGTGTAATTAAAGAATAATGCTAGATCGTGAGTGTAAAATTGAAAGTTAAAATGGTTCTGCTCATC
ATA-AGGATAATTAAAATATAATAGTAGAATGTGAGTGTAAGATCGAAAGTTAAAATGTTTGTAGTTATC
ATA-AGTATAGTTAAATAATAATAGTAGAGGGTGAGTGTAGAATTAAAAGTTAAAGGGTTTTTAGTTATC
ATG-AGTATAATTAAATGATAATACTAGGCCGTGAATCTAGAATTGAAAGTTAAAACCTTTTTAGTCATC
AGATAGCATCATTAAATAAGAATACTAG-CTGTGATTTTAAGGTCGAA—TTAAA—CCCTCTATTCACC

ACATAGCATCATTAAATAAGAATACTAG-CTGTGATTTTAAGGTCGAA—TTAAA—CCCTCTATTCACC
* bk * bk kkkk  dokk K bk * bk okk ok Kk Kk

=

Glandirana tientaiensis KJ941041
Yan et al. 2014

N
7

This study

Glandirana rugosa AB311298

Kurabayashi ef al. 2010

Glandirana rugosa KF771341

Glandirana tientaiensis KI'771342,KF771279,80
Glandirana emeljanovi KF771343,KF771278
Xia er al. 2014

=

Odorrana schmackeri KJ149452
Lietal 2014
Odorrana schmackeri KP732086
Bu et al. 2016

This study

Odorrana margaretae KJ815050

Chen et al. 2014 '
Odorrana tormota DQ835616

Su et al. 2007

This study

Odorrana ishikawae AB511282
Odorrana hosii AB511284
Odorrana narina AB311287
Odorrana of. schmackeri AB511290
Kurabayashi ef al. 2010

Rana coreana KJ590550 “trul;”

Rana kunyuensis KF840516 gap

Rana kunyuensis KF840516 trul;

Rana chaochiaoensis KU246048 trnL;
Rana kukunoris KU246049 trnL;

Rana omeimontis KU246050 trnL
Lithobates catesbeianus KF049927 trnL;
Odorrana margaretae KI815050 trul
Pelophylax nigromaculatus AB043889 trul;
Amolops loloensis KT750963 trnL,

TAGCTACCAATAGCCCCAATAAAATTATATTACGTCACGTTCCAGACAACCTTAAGATCAGATGAGACTAACTCTTT-—————
TAGCTATCAATAGCCCCAATAAAATTATATTACGTCACGTTCCAGACAACCTTAAGATCAGATGAGACTAACTCTTT-—————
- ——GCTTCTATAGGAAAAGAGTTTTCCCCTAGTATTA-GGCACTGGAACGTCTTGGTGCAAGTCCAAGTGGAAGCT
— GCTTTTAAAGGAAAAGAGCCCTCGAGTGGGGTTA-GGCGCCAGCATCTCTTGGTGGAAGTCCAAGTAAGAGCT
— GCTTTTAAAGGAAAAGAGCCCTCGAGTGAGGTTA-GGCGCCAGCATCTCTTGGTGGAAGTCCAAGTAAAAGCT
- GCTTTTAAAGGAAAAAAGCCCTCCACTGGCCTTA-GGCGCCAGCATCTCTTGGTGCAAGTCCAAGTAAAAGCT

—GCTTTTAAAGGAAAAGAGCCCTCCACTGGTCTTA-GGCGCCAGCATCTCTTGGTGCAAGTCCAAGTAAAAGCT
—GCTTTTAAAGGAAAACAGTTCTCCACTAGCCTTA-GGAGCCAGCATCTCTTGGTGCAAGTCCAAGTAAAAGCT
GCTTTTAAAGGAAAAGAGCCCTCCACTGGCCTTA-GGAGCCAGCATCTCTTGGTGCAAGTCCAAGTAAAAGCT
——GCTTTTAAAGGAAAACAGCCCTCCACTGGTCTTA-GGCACCAGCACTTCTTGGTGCAAATCCAAGTAAAAGCT

R kK K KX * % * * Kbk K%

F

Babina holsti AB761264 ps-trnH
Babina holsti AB511295 ps-trnll
Babina subaspera AB761265 ps-trnll
Babina holsti AB761264 trull

Babina holsti AB511295 truH

Babina subaspera AB761265 trnH
Babina adenopleura JX033120 trnH
Sybvirana guentheri KN033413 trnH
Babina okinavana AB761266 truH
Sybvirana guentheri KMO35413 “ Wtrn Il
Babina okinavana AB761266 “ Vtrnll”

GTGAACATAGTTAACAAAAA-—CTAGGT-GTAATTCTAT—ACAAAGGTTTAAACCCTTTTGTTCACT
GTGAACATAGTTAACAAAAA-—CTAGGT-GTAATTCTAT—ACAAAGGTTTAAACCCTTTTGTTCACT
GTGAACATAGTTAACAAAAA-—CTAGAC-GTAATTCTAT—ATAAAGGTTTAAACCCTTTTGTTCACT
GTAAATATAGTTTAGTAAAA-CTCTAGATTGTGATTGTAGCAAGAAAGGTTAAAGTGGTTTTATTTAGG
GTAAATATAGTTTAGTAAAA-CTCTAGATTGTGATTGTAGCAAGAAAGGTTAAAGTGGTTTTATTTAGG
GTAAATATAGTTTAGTAAAA-CTCTAGATTGTGATTCTAGCAAGAAAGGTTAAACTCCTTTTATTTACC
GTGAATATAGTTTAAGAAAAAGCCTAGATTGTGATTCTAGTAAGAAAGGTTAAATCCCTTTTATTCACC
GTGAATATAGTTTAAGAAAAAGCCTAGATTGTGATTCTAGTAAGAAAGGTTAAATCCCTTTTATTCACC
GTGAATATAGTTTAACAAAAACCCTAGATTGTGATTCTAGCAAGAAAGGTTAAATCCCTTTTATTCACC
——————————— TAAGTATAGATAC———ACAGTG—TATATGCATTAAGGTTGAA-—CCT—TAACTAG-

————————— CGAGTATAAATAGGT-ATAGTG—TATATGGATATGATGTAAA—CCTCTTAACTAG-

Rana coreana KM590550
Direct Submission

|
i

Rana kunyuensis KF840516 l
Liet al. 2014

This study

Hf

Babina okinavana AB761266
Kakehashi et al. 2013

Sybvirana guentheri KM035413
Wu et al. 2014

“ .i"\. This study
7

Babina adenoplenra JX033120
Yu et al 2012

Figure S1 Correction of some mitogenome annotation errors previously submitted to GenBank. (A)—(H) are the homologous sequence
alignments and the annotation corrections of the #nS'”" gene of Glandirana genus, the trnH gene of Odorrana genus, the trnL““" gene of
Rana genus, and the trnH gene of Babina genus, respectively. The information of each gene or region is the same as those in Figure 1, and
the ps- and ¥ indicate the corresponding pseudogene. The double quotation marks (e.g. “trnS,”, “trnL,”, and “ps-trnH”) indicate that this
annotation is an error.

During the early analysis, we observed that there were many errors in some mitogenome annotations submitted to GenBank. In order to
avoid interferences caused by these errors in our subsequent analysis, we reanalyzed all sequences using the online services MitoAnnotator
and ARWEN. Overall, we made the following important corrections:

(1) There were four Glandirana mitogenomes in our data (Table 1). Yan et al., (2016) reported that the G. tientaiensis mitogenome
(KJ941041) possessed all 22 tRNAs. However, we were ffailed to detect the presence of #nS'" using the online programs. Additionally,
homologous sequences alignments indicated that the primary sequence of the typical location of #75'?" in this mitogenome was very similar
to those in the other Ranidae species (Figure S1A). As many scholars reported in Glandirana mitogenomes (AB511298, KF771278-80,
KF771341-3), the typical locations of #nS"“”" were 62-63 bp non-coding fragments, which should be identified as pseudogenes (ps-trnS'’,
or ¥ trnS'”", Figure S1B) (Kurabayashi ef al., 2010; Xia et al., 2014).

(2) Typically, the trnH gene was located between the ND4 and the #rnS"®" genes in most anuran mitogenomes, but it was translocated
in Odorrana mitogenomes (Kurabayashi et al., 2010). However, Li et al. (2014) reported that the loss of #rnH was the distinctive feature
in the O. schmackeri mitogenome (KJ149452). Our homologous sequences alignments confirmed that the primary sequence of the typical
location of #rnH in this mitogenome was very similar to those in other Ranidae mitogenomes and the anticodon really existed (Figure S1C).
Therefore, we speculated that the trnH in O. schmackeri mitogenome was just converted into a pseudogene (ps-trnH, or ¥ trnH, Figure S1D).



More interestingly, Chen et al. (2015) thought that the #rnH gene was translocated into the D-loop region in O. margaretae mitogenome
(KJ815050, Figure S1D), as previously reported in O. tormota (DQ835616, Figure S1D) (Su et al., 2007). However, our re-annotations of
those two genomes were inconsistent with their views but consistent with those of Kurabayashi et al. (2010) (Figure S1D). For these reasons,
we corrected the organizational order in Odorrana mitogenomes as “CR-trnH (or ¥ trnH)-gap-trnL" (Figure S1D).

(3) The GenBank entry KM590550 is a near-complete mitogenome sequence of R. coreana. Regrettably, the tRNA-Phe gene was
abbreviated incorrectly as #nP in the original annotation, but in fact it should be #nF. Moreover, the putative #rnL“" gene was not present
in our prediction and its nucleotide similarity with the corresponding gene in other ranid frogs was very low. Instead, it shared extremely
high sequence identity (99%) with the non-coding region between the #nS*“" and ND6 genes of R. kunyuensis mitogenome (Figure S1E).
Additionally, R. kunyuensis mitogenome owned a novel gene order arrangement with duplicate D-loop regions and a translocation of trnL""
and ND5 in comparison with congeneric mitogenomes (Li ef al., 2016b). We believed that the real #rnL““" gene should be located at the
undetermined part of this mitogenome (KM590550), and these two mitogenomes might share the same gene order arrangement (Figure S1F).

(4) Kurabayashi ef al. (2010), Kakehashi et al. (2013) and Wu et al. (2016) successively pointed out that the Babina species (B. holsti
ABS511295 and AB761264, B. subaspera AB761265 and B. okinavana AB761266) and Sylvirana guentheri (KM035413) owned one
pseudogene of trnH (ps-trnH, or ¥ trnH) located at the downstream position of D-loop region. However, in the sibling B. adenopleura
mitogenome (JX033120), a similar phenomenon did not occur (Yu et al., 2012a). Here, the multiple sequences alignments showed that the
putative ps-trnH nucleotide similarities with the real #rnH in both B. okinavana (AB761266) and S. guentheri (KM035413) were quite low
(Figure S1G). Given that the three species (including B. okinavana, B. adenopleura and S. guentheri) were clustered into a clade in the
phylogenetic tree (Figure 2), which to some extent implying that they might share a identical gene order, we inferred the putative ps-trnHs
were just a segment of the D-loop regions (Figure S1H).
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Figure S2 Circular map of the mitochondrial genomes of three Rana frog analyzed in this study. Each transfer RNA gene is represented by
the standard one-letter amino acid code, and other genes are abbreviated as follows: /2 and 7685, 12S and 16S ribosomal RNA; ATP6 and
ATPS, adenine triphosphatase subunits 6 and 8; COI-3, cytochrome ¢ oxidase subunits 1-3; CYTB, cytochrome b; NDI—6 and 4L, NADH
dehydrogenase subunits 1-6 and 4L. O, denotes the replication origin of light strand. Those genes encoded by the heavy and light strands and
their respective transcriptional directions are shown outside and inside the circle, respectively.
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