92 research outputs found
Multi-Scale Modeling of Adhesion Forces in Gas-Solid Fluidized Beds
RÉSUMÉ: Divers secteurs industriels, principalement les processus chimiques et pétrochimiques, utilisent largement des réacteurs à lit fluidisé gaz-solide. Le développement de modèles capables de prédire les divers phénomènes de transport au sein d’un lit fluidisé gaz-solide est crucial pour sa conception, son optimisation et sa mise à l’échelle. Les forces interparticulaires affectent l’hydrodynamique du lit fluidisé et son efficacité opérationnelle. L’omission des forces inter-particulaires est l’un des principaux points de désaccord entre les chercheurs dans l’analyse de l’hydrodynamique des lits fluidisés gaz-solide. Cette recherche doctorale vise à développer une fermeture de contrainte pour un modèle macroscopique qui prend en compte l’influence des forces de Van der Waals interparticulaires afin de prédire le comportement de fluidification observé dans les expériences pratiques. Nous avons utilisé une approche de modélisation multi-échelle pour atteindre cet objectif. Le dépassement de la chute de pression du lit à la vitesse minimale de fluidisation, qui se produit pendant la transition d’un état de lit fixe à un état de lit fluidisé, est un phénomène courant pour les particules fines classées dans le groupe A selon la classification de Gel-dart. Ces particules présentent une hystérésis entre les courbes de chute de pression pour les trajectoires de vitesse de gaz décroissante et croissante. Cette étude utilise deux mod-èles de pression de particules adhésives dans des simulations de modèles à deux fluides pour incorporer l’influence de la force de Van der Waals interparticulaire, dans le but de prédire le dépassement de la pression. Le premier modèle de pression adhésive, développé dans le cadre de la théorie cinétique des écoulements granulaires rapides, n’a pas réussi à capturer le dépassement en raison de la prévalence de contacts multiples et prolongés dans les lits fixes. Nous avons proposé une fermeture alternative basée sur le nombre de coordination, générant une contribution adhésive significativement plus élevée que le modèle de la théorie cinétique et reproduisant avec succès le dépassement de la chute de pression. ABSTRACT: arious industrial sectors, mainly chemical and petrochemical processes, extensively employ gas-solid fluidized bed reactors. Developing models capable of predicting the diverse trans-port phenomena within a gas-solid fluidized bed is crucial for its design, optimization, and upscaling. Interparticle forces affect fluidized bed hydrodynamics and operational efficacy. The omission of interparticle forces is a primary point of contention among researchers in analyzing gas-solid fluidized bed hydrodynamics. This doctoral research aims to develop a stress closure for a macroscopic model that con-siders the influence of interparticle Van der Waals forces to predict the fluidization behavior witnessed in practical experiments. We employed a multi-scale modeling approach to achieve this goal. The overshoot in bed pressure drop at the minimum fluidization velocity, occurring during the transition from a fixed to a fluidized bed state, is a common phenomenon for fine particles categorized under Group A according to Geldart’s classification. These particles exhibit hysteresis between the pressure drop curves for the decreasing and increasing gas velocity paths. This study employs two adhesive particle pressure models within two-fluid model simulations to incorporate the influence of interparticle Van der Waals force, aiming to predict the pressure overshoot. The first adhesive pressure model, developed within the kinetic theory of rapid granular flows framework, failed to capture the overshoot due to the prevalence of multiple and prolonged contacts in fixed beds. We proposed an alternative closure based on coordination number, generating a significantly higher adhesive contribution than the kinetic theory model and successfully reproducing the pressure drop overshoot
Macro-scale numerical investigation of the contribution of Van der Waals force to the pressure-drop overshoot in fine-particle fluidized beds
ABSTRACT: Interparticle Van der Waals force contributes to the overshoot in the bed pressure drop at the minimum fluidization velocity during the transition from static to fluidized bed conditions, which is a well-known phenomenon in the fluidization of fine particles. In this study, two adhesive particle pressure closures considering the effect of interparticle Van der Waals force are used in two-fluid model simulations with the intention to generate the pressure overshoot. The first adhesive pressure model developed within the context of the kinetic theory of rapid granular flows failed to produce the overshoot due to the dominance of multiple and long duration contacts in the fixed-bed flow. Another closure based on the coordination number was then proposed to represent long-lasting interparticle contacts, which gave an adhesive contribution much larger than the one of the kinetic theory model and was able to create the pressure drop overshoot
Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study
Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
Evaluation of prognostic risk models for postoperative pulmonary complications in adult patients undergoing major abdominal surgery: a systematic review and international external validation cohort study
Background
Stratifying risk of postoperative pulmonary complications after major abdominal surgery allows clinicians to modify risk through targeted interventions and enhanced monitoring. In this study, we aimed to identify and validate prognostic models against a new consensus definition of postoperative pulmonary complications.
Methods
We did a systematic review and international external validation cohort study. The systematic review was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE and Embase on March 1, 2020, for articles published in English that reported on risk prediction models for postoperative pulmonary complications following abdominal surgery. External validation of existing models was done within a prospective international cohort study of adult patients (≥18 years) undergoing major abdominal surgery. Data were collected between Jan 1, 2019, and April 30, 2019, in the UK, Ireland, and Australia. Discriminative ability and prognostic accuracy summary statistics were compared between models for the 30-day postoperative pulmonary complication rate as defined by the Standardised Endpoints in Perioperative Medicine Core Outcome Measures in Perioperative and Anaesthetic Care (StEP-COMPAC). Model performance was compared using the area under the receiver operating characteristic curve (AUROCC).
Findings
In total, we identified 2903 records from our literature search; of which, 2514 (86·6%) unique records were screened, 121 (4·8%) of 2514 full texts were assessed for eligibility, and 29 unique prognostic models were identified. Nine (31·0%) of 29 models had score development reported only, 19 (65·5%) had undergone internal validation, and only four (13·8%) had been externally validated. Data to validate six eligible models were collected in the international external validation cohort study. Data from 11 591 patients were available, with an overall postoperative pulmonary complication rate of 7·8% (n=903). None of the six models showed good discrimination (defined as AUROCC ≥0·70) for identifying postoperative pulmonary complications, with the Assess Respiratory Risk in Surgical Patients in Catalonia score showing the best discrimination (AUROCC 0·700 [95% CI 0·683–0·717]).
Interpretation
In the pre-COVID-19 pandemic data, variability in the risk of pulmonary complications (StEP-COMPAC definition) following major abdominal surgery was poorly described by existing prognostication tools. To improve surgical safety during the COVID-19 pandemic recovery and beyond, novel risk stratification tools are required.
Funding
British Journal of Surgery Society
Evaluation of appendicitis risk prediction models in adults with suspected appendicitis
Background
Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis.
Methods
A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis).
Results
Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent).
Conclusion
Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified
Multi-Scale Modeling of Adhesion Forces in Gas-Solid Fluidized Beds
Le dépassement de la chute de pression du lit à la vitesse minimale de fluidisation, qui se produit pendant la transition d'un état de lit fixe à un état de lit fluidisé, est un phénomène courant pour les particules fines classées dans le groupe A selon la classification de Geldart. Ces particules présentent une hystérésis entre les courbes de chute de pression pour les trajectoires de vitesse de gaz décroissante et croissante. Cette étude utilise deux modèles de pression de particules adhésives dans des simulations de modèles à deux fluides pour incorporer l'influence de la force de Van der Waals interparticulaire, dans le but de prédire le dépassement de la pression. Le premier modèle de pression adhésive, développé dans le cadre de la théorie cinétique des écoulements granulaires rapides, n'a pas réussi à capturer le dépassement en raison de la prévalence de contacts multiples et prolongés dans les lits fixes. Nous avons proposé une fermeture alternative basée sur le nombre de coordination, générant une contribution adhésive significativement plus élevée que le modèle de la théorie cinétique et reproduisant avec succès le dépassement de la chute de pression.En outre, nous avons construit une base de données numériques CFD-DEM (Computational Fluid Dynamics-Discrete Element Method) pour prédire l'hystérésis dans la chute de pression. Cette base de données peut guider la formulation d'une équation de transport eulérienne pour le nombre de coordination, permettant l'incorporation des effets de l'historique des déformations. Nous avons étudié l'impact de la force de Van der Waals et de la friction statique sur la fluidisation des solides fins à l'échelle moyenne en utilisant des simulations CFD-DEM et leur rôle dans l'apparition du phénomène de dépassement de pression. Notre analyse examine des paramètres tels que la chute de pression du gaz, le vide du lit, le nombre de coordination, les pressions répulsives et adhésives des solides, le gradient vertical de vitesse des solides, le tenseur de tissu et la contrainte de cisaillement particule-paroi tout au long des processus de défluidisation et de fluidisation. Nous avons démontré qu'il est nécessaire de prendre en compte l'adhésion de Van der Waals pour prédire l'expansion homogène du lit sur toute la gamme des vitesses, du minimum requis pour la fluidisation au minimum pour le bullage. L'ensemble de données CFD-DEM généré peut guider le développement de fermetures de contraintes solides pour les modèles à deux fluides afin d'incorporer les effets de l'adhésion de Van der Waals et de la friction statique sur l'hydrodynamique de la fluidisation, ce qui permet de prédire l'hystérésis dans la chute de pression du lit à l'échelle macroscopique. Dans ce travail, nous avons incorporé un modèle de frottement statique-dynamique dans le code CFD-DEM massivement parallèle YALES2 à l'aide d'un algorithme en deux étapes, afin de remédier aux lacunes du modèle de frottement dynamique de Coulomb, qui est pratique pour les écoulements granulaires rapides mais ne s'applique pas aux lits stationnaires. Nous avons validé notre mise en œuvre par une série de tests à macro- et micro-échelle. En outre, nous avons introduit dans YALES2 les forces de Van der Waals entre particules et entre particules et parois, et validé cet ajout à l'échelle microscopique. En outre, nous avons postulé une expression de relaxation pour le terme source dans l'équation de transport des nombres de coordination et déterminé le temps de relaxation des nombres de coordination à l'aide de données de simulation CFD-DEM. En outre, nous avons utilisé une technique de pénalisation pour coupler de manière semi-implicite les phases gazeuse et solide, en particulier par le traitement implicite des forces de traînée et d'Archimède. Cette approche vise à résoudre les problèmes de stabilité rencontrés lorsque le couplage interphase est explicite.The overshoot in bed pressure drop at the minimum fluidization velocity, occurring during the transition from a fixed to a fluidized bed state, is a common phenomenon for fine particles categorized under Group A according to Geldart's classification. These particles exhibit hysteresis between the pressure drop curves for the decreasing and increasing gas velocity paths. This study employs two adhesive particle pressure models within two-fluid model simulations to incorporate the influence of interparticle Van der Waals force, aiming to predict the pressure overshoot. The first adhesive pressure model, developed within the kinetic theory of rapid granular flows framework, failed to capture the overshoot due to the prevalence of multiple and prolonged contacts in fixed beds. We proposed an alternative closure based on coordination number, generating a significantly higher adhesive contribution than the kinetic theory model and successfully reproducing the pressure drop overshoot.In addition, we constructed a Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) numerical database to predict hysteresis in pressure drop. This database can guide the formulation of an Eulerian transport equation for the coordination number, enabling the incorporation of deformation history effects. We explored the impact of Van der Waals force and static friction on the fluidization of fine solids at the mesoscale using CFD-DEM simulations and their role in causing the pressure overshoot phenomenon. Our analysis examines parameters such as gas pressure drop, bed voidage, coordination number, repulsive and adhesive solid pressures, vertical solid velocity gradient, fabric tensor, and particle-wall shear stress throughout the defluidization and fluidization processes. We demonstrated that it is necessary to consider the Van der Waals adhesion to predict the homogeneous expansion of the bed across the range of velocities from the minimum required for fluidization to the minimum for bubbling. The generated CFD-DEM dataset can guide the development of solid stress closures for two-fluid models to incorporate the effects of Van der Waals adhesion and static friction on fluidization hydrodynamics, allowing for the prediction of hysteresis in bed pressure drop at the macroscale.In this work, we incorporated a static-dynamic friction model into the massively parallel CFD-DEM code YALES2 using a two-step algorithm, aiming to address the shortcomings of the Coulomb dynamic friction model, which is practical for fast granular flows but not applicable to stationary beds. We validated our implementation through a series of macro- and microscale tests. Furthermore, we introduced interparticle and particle-wall Van der Waals forces into YALES2 and validated this addition at the microscale. Additionally, we postulated a relaxation expression for the source term in the coordination number transport equation and determined the coordination number relaxation time using CFD-DEM simulation data. Moreover, we employed a penalization technique to semi-implicitly couple gas and solid phases, specifically through the implicit handling of drag and Archimedes forces. This approach aimed to resolve the stability issues encountered when the interphase coupling is explicit
- …
