638 research outputs found
Photonic realization of the relativistic Kronig-Penney model and relativistic Tamm surface states
Photonic analogues of the relativistic Kronig-Penney model and of
relativistic surface Tamm states are proposed for light propagation in fibre
Bragg gratings (FBGs) with phase defects. A periodic sequence of phase slips in
the FBG realizes the relativistic Kronig-Penney model, the band structure of
which being mapped into the spectral response of the FBG. For the semi-infinite
FBG Tamm surface states can appear and can be visualized as narrow resonance
peaks in the transmission spectrum of the grating
Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a)
The B apolipoproteins, apo-B48 and apo-B100, are key structural proteins in those classes of lipoproteins considered to be atherogenic [e.g., chylomicron remnants, \u3b2-VLDL, LDL, oxidized LDL, and Lp(a)]. Here we describe the development of transgenic mice expressing high levels of human apo-B48 and apo-B100. A 79.5-kb human genomic DNA fragment containing the entire human apo-B gene was isolated from a P1 bacteriophage library and microinjected into fertilized mouse eggs. 16 transgenic founders expressing human apo-B were generated, and the animals with the highest expression had plasma apo-B100 levels nearly as high as those of normolipidemic humans ( 3c50 mg/dl). The human apo-B100 in transgenic mouse plasma was present largely in lipoproteins of the LDL class as shown by agarose gel electrophoresis, chromatography on a Superose 6 column, and density gradient ultracentrifugation. When the human apo-B transgenic founders were crossed with transgenic mice expressing human apo(a), the offspring that expressed both transgenes had high plasma levels of human Lp(a). Both the human apo-B and Lp(a) transgenic mice will be valuable resources for studying apo-B metabolism and the role of apo-B and Lp(a) in atherosclerosis
Expression of human apolipoprotein B100 in transgenic mice. Editing of human apolipoprotein B100 mRNA
Apolipoprotein B (apoB) is a large glycoprotein that circulates in plasma as a major constituent of numerous lipoproteins. ApoB exists in two forms: apoB48 and apoB100. ApoB48 is identical in sequence to the N-terminal region of apoB100 and is generated by sequence-specific mRNA editing of the apoB100 transcript. Here, we describe the development of a line of mice expressing a human apoB transgene driven by promoter/enhancer sequences from the transthyretin gene. In these mice, immunodetectable human apoB100 is synthesized by the liver, kidney, and brain. Human apoB100 is found in low concentration (approximately 0.1 mg/dl) in the plasma of the transgenic mice and circulates in the low density lipoprotein fraction. The hepatic human apoB100 transcripts undergo mRNA editing at only slightly lower efficiency than the endogenous mouse apoB100 message. Therefore, there is no absolute species specificity to the apoB100 mRNA editing process
Extragalactic jets on subpc and large scales
Jets can be probed in their innermost regions (d~0.1 pc) through the study of
the relativistically-boosted emission of blazars. On the other extreme of
spatial scales, the study of structure and dynamics of extragalactic
relativistic jets received renewed impulse after the discovery, made by
Chandra, of bright X-ray emission from regions at distances larger than
hundreds of kpc from the central engine. At both scales it is thus possible to
infer some of the basic parameters of the flow (speed, density, magnetic field
intensity, power). After a brief review of the available observational
evidence, I discuss how the comparison between the physical quantities
independently derived at the two scales can be used to shed light on the global
dynamics of the jet, from the innermost regions to the hundreds of kpc scale.Comment: Proceedings of the 5th Stromlo Symposium: Disks, Winds, and Jets -
from Planets to Quasars. Accepted, to be published in Astrophysics & Space
Scienc
Envisioning the future of aquatic animal tracking: Technology, science, and application
Electronic tags are significantly improving our understanding of aquatic animal behavior and are emerging as key sources of information for conservation and management practices. Future aquatic integrative biology and ecology studies will increasingly rely on data from electronic tagging. Continued advances in tracking hardware and software are needed to provide the knowledge required by managers and policymakers to address the challenges posed by the world's changing aquatic ecosystems. We foresee multiplatform tracking systems for simultaneously monitoring the position, activity, and physiology of animals and the environment through which they are moving. Improved data collection will be accompanied by greater data accessibility and analytical tools for processing data, enabled by new infrastructure and cyberinfrastructure. To operationalize advances and facilitate integration into policy, there must be parallel developments in the accessibility of education and training, as well as solutions to key governance and legal issues
GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients
GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) within the subendothelial spaces and shuttles it to the capillary lumen. The GPIHBP1-bound LPL is essential for the margination of triglyceride-rich lipoproteins (TRLs) along capillaries, allowing the lipolytic processing of TRLs to proceed. In peripheral tissues, the intravascular processing of TRLs by the GPIHBP1-LPL complex is crucial for generating lipid nutrients for adjacent parenchymal cells. GPIHBP1 is absent in capillaries of the brain, which uses glucose for fuel; however, GPIHBP1 is expressed in capillaries of mouse and human gliomas. Importantly, the GPIHBP1 in glioma capillaries captures locally produced LPL. We document, by NanoSIMS imaging, that TRLs marginate along glioma capillaries and that there is uptake of TRL-derived lipid nutrients by surrounding glioma cells. Thus, GPIHBP1 expression in gliomas facilitates TRL processing and provides a source of lipid nutrients for glioma cells
Young-Onset Gastrointestinal Adenocarcinoma Incidence and Survival Trends in the Northern Territory, Australia, with Emphasis on Indigenous Peoples
Background and Aims: A concerning rise in incidence of young-onset cancers globally led to the examination of trends in incidence and survival of gastrointestinal (GI) adenocarcinomas in the Northern Territory (NT), Australia, over a 28-year period, with a special emphasis on Indigenous peoples. Methods: This cross-sectional analysis of a prospective longitudinal database, NT Cancer Registry (1990â2017), includes all reported cases of GI (oesophagus, gastric, small intestinal, pancreas, colon, and rectum) adenocarcinomas. Poisson regression was used to estimate incidence ratio ratios, and survival was modelled using Cox proportional hazard models separately for people aged 18â50 years and >50 years. Results: A total of 1608 cases of GI adenocarcinoma were recorded during the time of the study. While the overall incidence in people 18â50 years remained unchanged over this time (p = 0.51), the rate in individuals aged >50 years decreased (IRR = 0.65 (95% CI 0.56â0.75; p 50 years (IRR = 0.67 95% CI 0.59â0.75; p 50 years IRR = 0.48 95% CI 0.40â0.57; p 50 years HR = 1.66 95% CI 1.32â2.08; p < 0.0001). Conclusions: There is a trend towards an increased incidence of young-onset GI adenocarcinomas in the NT. Young Indigenous patients have lower incidence but worse survival across all GI subsites, highlighting significant health inequities in life expectancy. Targeted, culturally safe Indigenous community-focussed programs are needed for early detection and patient-centred management of GI adenocarcinomas.Mia Shepherdson, Shalem Leemaqz, Gurmeet Singh, Courtney Ryder, Shahid Ullah, Karla Canuto, Joanne P. Young, Timothy J. Price, Ross A. McKinnon, Stephen J. Pandol, Claire T. Roberts, and Savio George Barret
- âŠ